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Abstract
With increasing air pollution and its harmful effect on the residents of developing countries, the prediction and analysis
of pollutants have become an important research aspect. This study focuses on the spatio-temporal prediction of hourly
particulate matter with different deep learning modeling techniques for Delhi, India. The secondary data of particulate
matter concentrations and the meteorological parameters for the four static monitors in the area are collected from Central
Pollution Control Board (CPCB) for dates between January 2019 to April 2021. The study area of South Delhi is divided
into hexagonal grids. The datasets at the centroid of each grid are formulated with the spatial interpolation method
of inverse distance weighting and Kriging. The hexagonal grids are required to collate the data coming from dynamic
monitors. Three models with CNN, LSTM, and CNN-LSTM are developed for a total of fifteen cells. To evaluate developed
models, mean absolute error and root mean square error are used. The results from prediction models show that CNN-
LSTM models outperform the other two models. The predictions are accurate for the CNN-LSTM model compared with
the values obtained from the static monitor. Also, compared to the existing and individual models, the proposed hybrid
CNN-LSTM model results performed better for most of the cells. The prediction models can also provide the pollutant
concentration on various routes, which can assist residents in making travel choices based on the air pollution prediction
information. Planners and practitioners can replicate the developed models in other regions.
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Introduction

With increasing motorization, industries, and urbanization,
the air quality is deteriorating in the urban agglomerations
of developing countries. Urban air quality indicates key
concerns to the health of urban residents (1). In cities, people
face high exposure while traveling for different activities
and performing various activities throughout the day. People
need to know the information of air pollution exposure
to make choices to escape from negative externalities.
The exposure to pollution is heterogeneous and dynamic.
Particulate matter pollution contributes to the majority of air
pollution in Indian cities. Air pollution makes people face
various health problems such as throat and lung infections,
heart and respiratory diseases, etc. (2, 3). The particulate
matter concentrations vary swiftly with distance from sources
of pollutants, wind speed, wind direction, etc.

The travel behavior of residents has been studied in
literature exploring the influence of air pollution on travel
choices. It is observed that along with the choice of travel
modes such as active transportation, public transit, and
private vehicles, route choices also vary with exposure
to pollution (4). The accurate concentrations at street

level are required for providing alternate routes with
information of pollution exposure on each alternative. The
pollution monitoring of different types of pollutants and their
individual effects on human health can assist urban residents
in understanding the impacts of varying ambient air quality
levels and plan preventive measures. To prevent the alarming
scenarios due to degrading air quality, comprehending the
situation in advance with the help of monitoring and
prediction is advantageous. Accurate prediction models and
forecasting are essential for making informed travel choices
through which air pollution can be reduced. A dense network
of monitors is essential for adequate data availability and
good prediction models. The static monitors are costly
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and cannot be densely placed in large cities. Therefore,
spatial interpolation methods are employed for estimating the
pollutant concentration at high spatial resolution. However,
determining the pollutant concentrations at a later date
and time, i.e., temporal predictions, can help people plan
their future travel choices. Various models were used in
the literature for spatial, temporal, and spatio-temporal
predictions. Inverse distance weighting (IDW) method for
spatial was used to study the prediction of daily PM2.5
concentration, for which data from eight monitors in Delhi
was used excluding the meteorological parameter (5).

The daily PM2.5 was predicted at target locations, and the
profiles were plotted using spatial interpolation techniques
(Kriging and IDW) over data collected from 17 monitoring
stations in Delhi. The observed error (difference of predicted
and actual value) of Kriging and IDW was found out to be
22% and 24%, respectively (6). The trans-Gaussian spatial
prediction was used to generate interpolation maps that
helped in visualization of spatial variation for particulate
matter (PM2.5) and gaseous pollutants (NO2 and SO2) in
Egypt (7).

Initially, for forecasting pollutant concentrations,
regression-based models were used. Various regression-
based models were used to study the air quality monitoring
in Taiwan using the hourly pollutant data from 2012 to 2017,
which was later converted into daily and monthly data for
modeling (8). The authors considered and compared linear
regression, Lasso regression, Ridge regression, random
forest regression, K-neighbors regression, multi-layer
perceptron regression, and decision tree regression models.
A multivariate linear regression model was proposed to
achieve short period prediction of PM2.5 in Beijing, China.
The data for aerosol optical depth obtained using remote
sensing, meteorological factors (wind velocity, temperature,
and relative humidity) acquired from ground monitoring,
and other gaseous pollutants were considered for model
development (9). The regression models are sensitive to
outliers and are limited to only low-complexity features.

Along with the emerging usage of multiple regression
methods, machine learning models became popular for
prediction modeling. Air quality prediction was performed
using linear regression, Support Vector Machine (SVM),
decision tree, and Lasso regression methods, and the models
were evaluated using R2 values (10).

The prediction modeling of PM2.5 for neighboring cities
of Delhi, India, with data of six and a half months for the
year 2019, was performed. A stacked regression model was
proposed, which provided better results than other regression
models (11).

Further, the basic machine learning techniques were used
to develop a Geographically Weighted Predictor (GWP).
The models were developed using data from only four
locations. Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), and neural network were used to investigate

atmospheric pollutant concentration prediction (12). SVM
has a better ability to learn complex features, but it was
not found suitable for studies with large datasets and lacks
transparency in results (13). To overcome limitations of
SVM online scalable SVM ensemble learning method was
proposed (14). Similar to SVM, the random forest machine
learning method also has an excellent ability to comprehend
complex features, but real-time calculation speed and
effectiveness are low. Prediction modeling and forecasting
are performed through deep-learning methods for obtaining
better prediction results spatiotemporally. Techniques such
as Convolutional Neural Network (CNN), Artificial Neural
Network (ANN), and Recurrent Neural Network (RNN)
are used in deep learning. CNN is a widely used network
model and image processing technique proposed by (15),
and long short-term memory (LSTM) is a network model
proposed by (16) to solve the longstanding problems of
gradient disappearance in Recurrent neural networks (RNN),
and used widely in time-series forecasting (17). The use of
multi-output and multi-index of supervised learning based
on LSTM was shown to predict the PM2.5 based on 35
monitoring stations’ data (18). It was found in the literature
that the ANN worked better than conventional methods such
as regression, fuzzy logic, and principal component analysis
for pollutant prediction (19, 20).

With developing methodologies and the need for accurate
results, hybrid models were explored by researchers. (21) has
combined different models of various monitors (industrial,
external source, and local monitors) into an aggregated-
LSTM model to predict PM2.5. The results of different
regression models based on SVM, gradient boosted tree
regression, LSTM, etc., were compared and observed
improved results in the aggregated model. APNet, a CNN-
LSTM model, was developed formulated on 24 hours
cumulated wind speed, duration of rain (in hours), to predict
PM2.5 of the next hour (22). (23) developed a CNN-LSTM
model based on a time-distributed, one-dimensional CNN
layer for forecasting the next 24 hours PM2.5 concentration
in a study conducted for Beijing, China. The use of two-
dimensional CNN layers and batch normalization could
improve the model further. An integrated dual LSTM with
sequence to sequence technology was used to establish a
single-factor prediction model to obtain the predicted value
of each component in air quality data including the data
of neighboring stations and weather parameters (24). After
which, the attention mechanism-LSTM model was used as
the multi-factor prediction model. XGBoosting tree was used
to integrate these two models.

In India, Delhi is severely affected by air pollution, and
with increasing motorization, the situation is aggravated.
Lack of consistent particulate matter database at high
spatial and temporal resolution obstructs the environmental
assessments, accurate predictions, and modeling (25). The
daily, seasonal, and regional variations also need to be
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explored along with predictions at different locations. The
use of numerical methods can be time-consuming, and
therefore, deep-learning or hybrid models which overcome
the limitations of other models should be developed for
quick and efficient predictions. With increasing air pollution,
efficient and accurate prediction models are required to lessen
the impact by taking suitable measures against increasing air
pollution.

In previous studies, the prediction models were either built
for only one monitoring station or based on the data from
all the monitoring stations in the vicinity combined in one
model, limiting the results to a particular area. Notably,
the data used for prediction is primarily from the static
monitors. Given the advances in the technology of low-cost,
portable air pollution monitors, the dynamic, real-time air
pollution and meteorological information can be obtained
by installing them on buses/ trams (26, 27). Selection
of optimum routes for placement of mobile monitors for
covering the need of high-density of monitoring stations
was explored for high spatio-temporal resolution, which can
additionally increase the dataset for prediction algorithms
development (27). For real-time air pollution monitoring,
bus routes were selected based on route coverage image
analysis based on the non-satellite image of the study area
(28). The existing prediction methodologies do not apply
to such dynamic data or dynamic monitoring networks.
Dynamic monitoring network refers to deploying devices/
sensors (e.g., portable air pollution monitors) on traversing
vehicles/ UAVs. The devices will send the data at different
locations as the vehicle moves and at different time bins.
Clearly, data does not belong to a fixed location, and thus,
appropriate methods are required to handle/ process the data
coming from dynamic networks. The current study focuses
on providing a prediction framework that can also consider
the dynamic data and provide high precision spatio-temporal
predictions for PM2.5. The use of hexagonal grid formations
and model development for each cell can help overcome the
limitations of previous studies, as the pollutant concentration
depends highly on local parameters. This study aims to
develop a prediction model framework for high spatial and
temporal resolution considering the historical particulate
matter pollutant concentrations and meteorological data from
the dynamic monitoring network. The current study explores
the prediction modeling using three different deep learning
methods and compares the results to provide the most suitable
model.

Data & Methods
For the modeling based on historical data, secondary data
in the form of pollutant concentrations and meteorological
parameters are collected from Central Pollution Control
Board (CPCB) (29). Hourly data from multiple air pollution
monitoring stations are collected for January 2019 to April
2021. There were no monitors in South Delhi before the year

2019, and therefore, historical data for 2019-2021 is consid-
ered in the present study (29). Meteorological parameters
are included in prediction models as these parameters are
likely to influence the pollutant concentrations significantly
(30). Particulate matters, PM2.5 and PM10 (in µg/m3) and
the meteorological parameters, such as, temperature (in ◦ C),
barometric pressure (in mm Hg), humidity (in %), wind
speed (m/s) and wind direction are used in this study. The
clockwise angle from the north defines the wind direction.

The hourly variations of PM2.5 and PM10 (aerodynamic
particles size less than 2.5 and 10 micrometers) concentra-
tions of the four static monitors on two different days in
different seasons are shown in Figure 1. It can be observed
that PM2.5 and PM10 concentrations are high in November
(winter season) compared to June (summer season) due to
various reasons. At the same time, the value varies signif-
icantly with the time of the day. Increased local emissions
due to crop and biomass waste burning, winter inversion (low
wind speed with dip in temperature leads to accumulated
pollutants at lower height), and absence of photo-chemical
reactions in winters assists in increased concentrations in the
winter season compared to summer (31).

Study Area
The majority of Indian cities suffer from extremely high
levels of urban air pollution, particularly in the form of small-
sized particulate matter (5, 32). According to the World
Health Organization (WHO), the capital city of India, Delhi
is one of the most polluted cities in the world (5). Pollution
in Delhi usually spikes during the winters. For instance, it
exceeded almost 40 times the WHO’s ambient concentration
limits in the first week of November 2019 for PM2.5, i.e.,
a concentration value of around 950 µg/m3 (33). Delhi is
divided into 11 districts, and out of which the South Delhi
district has the highest number of static monitors concerning
its area. There are 4 monitors in the South Delhi district for
which the data is collected from the CPCB. The available
static monitors in the area located at Dr. Karni Singh shooting
range, Nehru Nagar, Okhla Phase- 2, and Sri Aurobindo
Marg, all of which are deployed by Delhi Pollution Control
Committee (DPCC) authority (see Figure 2).

The data should belong to monitors closer to the location
where prediction is to be made for having better prediction.
Ideally, this would mean having a dense monitoring
network. A model trained with the more extensive urban
agglomeration area data is less likely to be accurate than
multiple models trained with the data from localized,
multiple, smaller zones. Further, in a dynamic monitoring
network, having data from the same point is not possible,
i.e., data will be distributed over space and time. Therefore,
the cells are created, and models are developed for each
cell by converging the data points at the centroid of the
cell. In spatial analysis, grids of points or polygons are
frequently used to sample, index, or partition an area. The
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(a) PM2.5, June 05, 2019. (b) PM2.5, Nov. 03, 2019.

(c) PM10, June 05, 2019. (d) PM10, Nov. 03, 2019.

Figure 1. Seasonal variation of PM2.5 and PM10 for June 05, 2019 (left) and Nov. 03, 2019 (right).

square and triangular shapes are commonly employed in the
grid designs because of their simplicity in the definition, data
storage, and ease of re-sampling to different spatial scales.
Although hexagonal grids are not very common, these are

becoming more popular, keeping the fact that hexagonal grids
are a better approximation of the human vision grid (34).
In the past, many studies used hexagonal grids for spatial
visualization, and analysis (35). Regular hexagons feature
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Figure 2. Hexagonal grids and static monitors in South Delhi

additional symmetries and are the closest form of the circle,
so they are more appropriate for spatial data sets that suit
this study perfectly. Hexagons are better at fitting the earth’s
curvature than squares when dealing with a large spatial area
where the globe’s curvature becomes essential. Therefore,
hexagonal grids of 5 km side-to-side spacing covering the
whole area of South Delhi are opted for the current study,
as shown in Figure 2. With this, there are a total of 15 cells in
South Delhi (see Figure 2), for which the prediction models
are developed.

Dataset Formation
The detailed process of flow of this paper is shown in
Figure 3. The first part is to select the study area and collect
the hourly dataset of static monitors in south Delhi. The
next step is to generate augmented datasets using various
interpolation techniques like IDW and Kriging., followed
by preprocessing the data, including interpolating the null
values, normalizing the data, and converting the data into
a sliding window technique. Further, the dataset is divided
into training, validation, and testing sets. Then, various deep
learning models, such as CNN, LSTM, and CNN-LSTM, are
developed for model prediction. Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) is used for comparing
the model’s accuracy.

Data Preprocessing Preprocessing of data is performed to
address the noise in the data, missing values, and other
erroneous variables in the collected data to develop a

robust prediction model. In machine learning models, data
preprocessing refers to converting the raw data into readable
input for the machine learning model. There were missing
values in the air quality data, and the reason could have been
sensor device failure or network issues in data storing. Null
values in a dataset can lead to inaccurate results or failure
of the model itself. The null values are replaced with mean
values of the previous hour and following hour values to
eliminate the errors in the model that can occur due to missing
values.

Normalization Normalization gives equal importance to
each parameter so that no single variable control model
performance in one direction just because they are in more
absolute terms. Normalization of the dataset can also help
in boosting the training speed and improving prediction
accuracy. Also, variables assessed at different scales may not
contribute equally to the model fitting and which might lead
to bias, so the dataset is normalized between 0 and 1 using
Equation (1).

X ′ =
Xi −Xmin

Xmax −Xmin
(1)

where, Xi is the original sample value, Xmax and Xmin are
the maximum and minimum value of the whole parameter of
original data and X ′ is the value after normalization.

Correlation Understanding the relationship between the
parameters is essential while studying the machine learning
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Figure 3. Methodology for the prediction modeling

model dataset. The Figure 4 displays Pearson’s correlation
of heatmap for different parameters in the dataset. The
Pearson’s correlation ranges from -1 to 1, where the absolute
value shows the intensity of correlation (1 being highest,
0 being lowest), and the sign shows the direction (positive
or negative). The correlation value close to zero indicates
the independence and absence of a relationship between the
parameters. In the Figure 4, higher correlation values are
represented as dark green/ red panels.

For PM2.5, a negative correlation is observed with
temperature and wind speed, which indicates that with
the increase in temperature or wind speed, the PM2.5
concentration will decrease. It can also be verified with
Figure 1, which shows a lower concentration of PM2.5 in
summers compared to winters. A positive correlation of
PM2.5 with barometric pressure and relative humidity is
observed, which shows that with an increase in pressure
and humidity, the concentration of particulate matter also

increases. There are no parameters with exceptionally strong
correlation. Therefore, all the parameters are considered for
further modeling.

Spatial Interpolation Techniques After the hexagonal grid
formation for dividing the study area into smaller spatial
regions, the data point for each cell is fixed as the
centroid of each hexagon, respectively. Several spatial
interpolation methods were used widely in past studies, such
as IDW, Kriging, spline, Thiessen polygon, kernel density
estimation, etc. (36). There is no rule of thumb for the
selection of interpolation methods. Two of the available
spatial interpolation techniques are widely used and, thus,
employed to generate the dataset at each centroid for grids.
Figure 5 explains the steps followed for the creation of
an augmented dataset for each cell. Initially, the raw data
from four static monitors in South Delhi is collected from
CPCB. Then the centroids of all the cells are located. The
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Figure 4. Correlation between input parameters of the model
(Temp: temperature, RH: relative humidity, WS: wind speed,
WD: wind direction, BP: barometric pressure)

inverse distance weighting method is used to determine the
pollutant concentrations (PM2.5 and PM10) at centroids of
the hexagonal cells, and the ordinary 2D Kriging method
is employed for the spatial prediction of meteorological
parameters such as relative humidity and barometric pressure.

In addition to the data from static monitors, the different
data points from the dynamic monitoring networks within
a grid will be collated using IDW and 2D Kriging to the
centroid of the grids, as explained in the following sections.
The results from both methods are concatenated at the end to
form a single dataset for each cell.

Inverse Distance Weighting (IDW) In IDW, the known
points (points where data is directly measured from monitors)
on the determined values (from interpolation) depend on
the distance between known and unknown points. The
controlling power of the influence can be externally defined
for a smooth resulting surface. Power of 2 is most commonly
used in the literature (5) and hence used in this study. The
mathematical formula for IDW is given in Equation (2).

zj =
∑
i

zi
dnij

/
∑
i

1

dnij
(2)

where, zi is value at known point, dij is distance between
known and unknown point, zj is predicted value at unknown
point and n is a user selected exponent (often 1, 2 or 3).

2D Kriging Kriging’s method of spatial interpolation is
flexible to adopt different parameters and variogram forms
and has a wide range of applications (36). In IDW,
the weights are solely dependent on the distance, while
in Kriging, the weights depend on the overall spatial
arrangement of measured points and the distance between
measure and prediction points. When IDW is applied for

the spatial interpolation of meteorological parameters, the
interpolated values for relative humidity and pressure are
observed far from the actual value. Therefore the Kriging
method is employed, which is more realistic. The equation
for Kriging interpolation is shown in Equation (3). Kriging is
a two-step process, it includes:

• creation of variograms and co-variance to determine
the spatial auto-correlation, and

• prediction of unknown values.

Different types of variograms as circular, spherical, Gaussian,
exponential, and linear can be used. Ordinary Kriging is
widely used, with an assumption of unknown constant means.
In this study, the PyKrige toolkit is used to perform ordinary
2D Kriging interpolation on the dataset (37).

zj =
n∑

i=1

λizi (3)

where, zi is value at known point, zj is the predicted value at
unknown point, λi is unique weight for location i and n is a
user selected exponent (often 1, 2 or 3).

Data transformation Data transformation refers to the
process of converting raw data into data ready for modeling
by removing unused columns, changing data types, altering
the timestamps, and handling the errors in data. The factors
which influence variables from time to time are determined
through time series models. While training the model, the
results for a subsequent hour, from various sliding window
sizes, are used varying from 24 to 96 hours, out of which 72
hours is found as the most optimal value during the model
formulation and experimentation. For this study sliding
window approach is adopted, where the dataset of duration
from January 2019 to April 2021 was divided into 72-hour
window and 1-hour stride.

This technique is followed for all the models to reshape
the information by a fixed window so that the model is
comprehensible for the complete information possible at a
given period to achieve an accurate prediction.

Data sectioning
For the development of models, based on literature, the data
is divided into three sections, as follows:

• Training data: The section of data used to learn, see and
train the models, 80% of the prepared dataset is used to
train the models.

• Validation data: This data section is used to
validate and tune the trained model by altering the
hyperparameters. The models do not learn from
validation data and are only used for development. 10%
of the dataset is used for validating the models.

• Test data: This part of data provides an unbiased
evaluation of the trained and validated models. The
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Figure 5. Augmented dataset creation

remaining 10% of the dataset is used for testing the
models.

After sectioning, machine learning models are developed
on the training data, which are explained in the following
section.

Model Development
It is evident from exploratory data analysis that the pollutants
and meteorological parameters highly influence one another.
These parameters tend to follow specific trends and patterns
that are extracted using deep neural networks specially
designed for this task. In this study, three types of models
are used, i.e., Convolutional Neural Network (CNN), Long-
Short Term Memory (LSTM), and CNN-LSTM, as discussed
in the literature review.

Convolutional Neural Network
CNN models are mainly used for visual tasks but are not
limited to these. Figure 6 shows the architecture for the

CNN model, which is applied for prediction of PM2.5.
CNN is used to capture various trends of pollutants and
other meteorological parameters by treating the 72*7 matrix,
which is created using a sliding window approach, and a
pattern is identified using CNN pattern recognition (38).
Each convolution layer contains a series of filters known as
kernels. A kernel is a matrix that moves over the input data,
performs the dot product with the sub-region of input data,
and gets the output as the matrix of dot products, and each
filter tries to learn a new trend in the previous hours. Through
hyperparameter tuning of the CNN architecture model, the
best parameters to the architecture are shown in Figure 6.
The CNN architecture shown at Figure 6 uses a 3 x 3
kernel with 90 feature maps with stride set to 1 and padding
set to SAME. Rectified Linear Unit (ReLU) is used as an
activation function, which can solve the problem of gradient
disappearance, and its calculation speed and convergence
speed are faster than other activation functions (39). It is
followed by a max-pooling layer of size 1 x 3, which
reduces its resolution and complexity to achieve translation
invariance. After that, there is a layer of Batch Normalization
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Figure 6. Architecture for CNN model

that helps deep neural networks to standardize the inputs
to a layer for each mini-batch. This is followed with the
same sequence of layers with 45 filters in convolution layer
followed again with a max-pooling layer of size 1 x 3 and
a batch normalization connecting to a dense network, using
Sigmoid in the end to predict the output. As a consequence
of the normalized values (range [0,1]), the Sigmoid function
at the outer layer is logical. The Sigmoid activation function
is used in several previous studies for deep learning models
(22, 23). At the last stage of the network, with the help of a
flatten layer, the output from the Batch Normalization layer
was fed into a fully connected dense layer that is reshaped
into 9720 neurons (45 x 72 x 3), 7 parameters are predicted,
including the pollutant concentrations and the meteorological
parameters.

Long-Short Term Memory
Long short-term memory (LSTM) is a variant of the
traditional neural networks that exhibit dynamic behavior.
It helps the network capture the data’s context for various
operations, especially time series forecasting. Since LSTM
models are generally used for sequential analysis and have
the capability of long-term dependencies, they can be trained
to predict all the parameters for air quality for the next hour
by the historical data gathered for various grids. The proposed
system is trained with the dataset at the centroid for each cell,
shown in Figure 2.

A four-layer LSTM architecture is employed for the
current study. A 72 x 7 matrix data layer is used for the
input, which depicts the data for 72 hours and 7 parameters.
Hyperparameter tuning is performed to get good prediction
model architecture on LSTM architecture by working with
different LSTM cells and layers and used the best prediction
architecture as shown in Figure 7 The first two LSTM layers
have 80 and 50 LSTM cells, respectively, with a dropout
layer of 25%. It manages to stop all LSTM cells in a layer

from synchronously optimizing their weights, thus helping
the model prevent it from over-fitting conditions. Then the
following layers are supported by one more LSTM layer with
25 cells followed by a fully connected layer and output neural
network layer with activation function as sigmoid as shown
in Figure 7.

CNN-LSTM Model
The present study also proposes a hybrid CNN-LSTM model,
which combines the time-series model of LSTM with CNN
to extract effective features from data. The architecture of
the proposed CNN-LSTM is shown in Figure 8. The inputs
of CNN-LSTM are the tensors of the PM concentrations
and meteorological parameters over the last 72 hours. The
output is received in terms of prediction for all the input
data parameters for the next hour. Unlike regular CNN
or LSTM architectures, the first half of the architecture is
CNN and is used for feature extraction. The following half
of the architecture is LSTM forecasting, which analyzes
the features extracted by CNN and then estimates the PM
concentrations and meteorological parameters. Moreover, to
improve the accuracy, additional batch normalization and
dropout layers are added to the architecture of CNN-LSTM.

CNN is utilized for feature extraction; specifically,
two two-dimensional convolution layers and two batch
normalization layers are constructed. To prepare the data
into the format required by the LSTM, a reshape layer is
connected to the LSTM, it is a layer that reshapes inputs
into the given shape. As the various filter maps contain the
reoccurring patterns and features now, they feed to LSTM.
There are two LSTM layers and in-between a dropout layer
to avoid over-fitting, which is a common aspect in neural
networks, and there are many solutions available. Among all,
dropout is one of the efficient ones. Therefore, a dropout layer
is added, whose output is connected to the LSTM layer for
prediction and finally joined to a fully connected layer and
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Figure 7. Architecture for LSTM model

an output layer as shown in the Figure 8. The CNN part of
CNN-LSTM architecture used in this study comprises two
convolutional layers each of size 100 and 50, respectively,
i.e., the first convolution layer has 100 unique feature maps
used to extract the various trends and the second convolution
layer has 50 unique feature maps. Each of the convolution
layers is followed by a batch normalization layer which
solves the issue of internal covariate shift (40). The output
from the second batch normalized layer is reshaped to feed
it as the input to the LSTM layer, and there are 50 units
in the first LSTM layer, which are followed by a dropout
of 0.25 that prevents neural networks from overfitting (41).
Finally, one more LSTM layer is added of 25 units, followed
by a fully connected dense layer that gives final output using
sigmoid as an output function.

Results & Discussions

This study explores deep learning techniques for spatio-
temporal prediction of particulate matter and meteorological
parameters. For this, three deep learning models are
developed for the temporal prediction of PM2.5, which
provides an understanding of the trends and prediction for
particulate matters over a selected region of Delhi. For the
development of the deep learning models, Google Colab
platform is used (42). Each of the models is trained with
30 epochs. The configuration included 2vCPU, 12 GB RAM,
and GPU performances of 4.1 and 8.1 TFLOPS for Tesla K80

and T4 GPUs. Average training time per epoch is observed as
3 seconds for CNN, 6 seconds for LSTM, and 16 seconds for
proposed CNN-LSTM model. With increasing complexity
the computational burden of the model also increases.

One of the static monitors is at the centroid of cell K;
therefore, the actual data is available for this cell and used for
sanity testing. The actual values are the PM2.5 concentration
data from the static monitor. In contrast, the interpolated
values are obtained from applying IDW on data from all four
static monitors and estimating the values at the centroid of a
cell. As proposed in the present study, the data from mobile
monitoring network would be aggregated to these cells. Since
the dynamic monitoring network was not deployed, no histor-
ical data was available. Due to the COVID-19 pandemic, the
portable devices could not be deployed and test data is also
imputed from the static monitors.

To evaluate and compare the accuracy of the deep learning
models for PM2.5 predictions using the input data, the Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE) values are used. Evaluation parameters such as
RMSE and MAE explain the performance of deep learning
models developed for forecasting. These can be used to
achieve the desired accuracy of models. MAE (Equation (4))
measures the average magnitude of the errors of the
predictions without considering their direction by taking
modulus. It is an average over the test sample of the absolute
differences between predicted and actual observations where
all individual differences have equal weight. Similarly,
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Figure 8. Architecture for CNN-LSTM model
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RMSE (Equation (5)) follows the quadratic scoring rule that
also measures the average magnitude of the error. It is the
square root of the average of squared differences between
predicted and actual observation, and it allows us to estimate
the standard deviation (σ) of the error for a typical single
observation.

The MAE and RMSE are given by Equations (4) and (5).

MAE =

∑n
i=1 |xi − yi|

n
(4)

RMSE =

√∑n
i=1 (xi − yi)2

n
(5)

Where, xi is the estimated time series, yi is the actual
observations time series and n is the number of non-missing
data points.

Figure 9 shows the mean absolute errors in each model for
all cells, and it can be observed that the MAE value for the
CNN-LSTM model is lesser than the MAE value for CNN
and LSTM models for the majority of cells. Similar to MAE
values, Figure 10 shows the root mean square error values
of each model for all grids. A similar trend is followed that
shows only three out of fifteen grids with RMSE value for the
CNN-LSTM model has higher RMSE value for at least one
of the other two models.

The comparative results and evaluation of the models con-
firm that the combined model of CNN-LSTM outperforms
CNN and LSTM models for 10 cells out of a total of 15 cells.
Further, the predicted value is compared with the actual value
for all three models.

Figure 11, Figure 12, and Figure 13 show the difference
between predicted and actual values of PM2.5 over the
duration of 360 hours from 15th to 30th April, 2021, for the
CNN ,CNN-LSTM, LSTM model for cells H, L and N. Along
with confirmation from MAE and RMSE values about CNN-
LSTM being the most suitable model (Figures 9 and 10),
the Figure 11c, Figure 12c, and Figure 13c also show that
the curve for actual and predicted values of PM2.5 is with
minimum deviations, i.e., for CNN-LSTM model.

For Determining the model accuracy, hourly PM2.5
concentrations data for two months from 1st May to 30th

June 2021, is collected for four static monitors from CPCB.
For the centroid of each cell, the data is interpolated using
IDW and Kriging. As shown in Figure 2, one of the static
monitors located at Dr. Karni Singh Shooting range lies in
grid K. Therefore, to compare the actual values obtained
from the static monitor and predicted values estimated from
models, grid K is selected. Figure 14 compares the actual
(data from static monitors) and predicted values of PM2.5
using three deep learning techniques CNN, LSTM, and CNN-
LSTM. It confirms that the CNN-LSTM can predict the
PM2.5 efficiently.

The present study shows the results for CNN-LSTM along
with the individual models of CNN and LSTM, presented for
360 hours in Figures 11 to 13, are better than the results
shown in the literature (21), where the results for CNN,
and LSTM individually were explained for next 8 hours
time span. A CNN-LSTM model was developed without
batch normalization, which is a very crucial step to solve
the problem of internal covariate shift, and also used one
dimensional CNN layers that limit the motion of kernel to one
direction only and limit the full strength of CNN-LSTM (23).
On the contrary, the current study uses two-dimensional CNN
layers to improve the strength of CNN-LSTM models. It is
found that temperature is highly correlated to PM2.5 trends
(Figures 1 and 4), while the influence of temperature was
not considered for PM2.5 prediction using similar a model of
CNN-LSTM (22).

The Figures 15a and 15b depicts the spatial prediction at
the centroid of each cell using the CNN-LSTM model in
peak (08:00) and off-peak (15:00) hours for Feb. 01, 2021
and June 28, 2021, respectively. Firstly, as expected, the
winter (Figure 15a) and summer (Figure 15b) seasons have
significant difference in the PM2.5. Interestingly, a major
difference can be observed within South Delhi depending on
the cell location and time of the day, i.e., the road users may
get a chance to alter the choice (e.g., route and departure
time) and reduce the air pollution exposure. The accuracy
of the model can be further enhanced by using the dynamic
monitoring network.

The practical applications of this study lie in estimating the
accurate PM concentrations for researchers, policymakers,
officials related to the environment, and the public. The
commuters in Delhi are willing to update their travel choices
provided air pollution and route information is provided
to them (43). Commuters can consider the pollution levels
in changing their travel behavior, such as changing the
travel mode, changing the departure time, choosing to travel
or staying at home, etc. The different routes possibilities
(e.g., shortest path, greenest path, balanced path, etc.) would
facilitate the commuters to reduce their air pollution exposure
based on real-time congestion and air pollution patterns (44).
In the long run, residence selection (e.g., location choice) can
also depend on the levels of air pollution in different areas.
This indicates that with the help of a prediction framework, a
provision for disseminating air pollution information can be
provided, which is likely to reduce the air pollution exposure
of the daily commuters.

Conclusions
To understand dynamic air pollution and push people to
make informed decisions and prevent health issues due to
increasing air pollution, providing information at all routes
is essential. People face maximum exposure to air pollution
while traveling. Therefore, the travel choices such as travel
mode and route influence the exposure and effect on human
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Figure 9. Mean absolute error in each model for all grids

Figure 10. Root mean square error in each model for all grids

health extremely. For estimating exposure on all commuters’
routes, the concentration of pollutants on each point in
the vicinity is required. Due to cost factors, the monitors’

network cannot be dense enough to provide accurate values
at each location. For determining pollutant concentration at
all routes, high-resolution spatial prediction and accurate
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(a)

(b)

(c)

Figure 11. The results of CNN (a), LSTM (b), and CNN-LSTM
(c) for grid H.

forecasting are required. This paper proposed a framework
for the development of a prediction model for PM2.5
pollutants in the South Delhi region of India. The model is
applicable for a dynamic monitoring network. Historical data
were collected from Central Pollution Control Board (CPCB)

(a)

(b)

(c)

Figure 12. The results of CNN (a), LSTM (b), and CNN-LSTM
(c) for grid L.

for all meteorological parameters and particulate matters of
four static monitors from South Delhi.

Initially, the model was developed through two techniques,
i.e., CNN and LSTM, on the meteorological parameters
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(a)

(b)

(c)

Figure 13. The results of (a) CNN, (b) LSTM, and (c)
CNN-LSTM for grid N.

of temperature, relative humidity, pressure, wind speed and
direction, and particulate matters. The prediction model
inputs the previous 72 hours data and predicts the following

Figure 14. Results of CNN (top), LSTM (middle), and
CNN-LSTM (bottom) for cell K, for time period from May 01,
2021 to June 30, 2021.

(a) Feb. 01, 2021, 08:00 (peak hour, left) and 15:00 (off peak, right)

(b) June 28, 2021, 08:00 (peak hour, left) and 15:00 (off peak, right)

Figure 15. Spatial prediction of PM2.5 from CNN-LSTM for Feb.
01, 2021 and June 28, 2021 in peak hour (left) and off peak hour
(right).
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hour data of particulate matter and other meteorological
parameters. A hybrid model was proposed as a combination
of CNN and LSTM, where CNN extracts the effective
features and LSTM manages time-series data processing
to improve the accuracy of the prediction model. Through
experimental results, we found that the CNN-LSTM model
outperforms the remaining existing models in terms of MAE
and RMSE as shown in Figure 9 and Figure 10. The
proposed model may provide abrupt predictions if external
environmental factors like a sudden increase in toxic gases
and traffic congestion are present. As the unknown causes
of change in pollution concentrations cannot be added in
models, this limitation exists. Due to the pandemic situation,
portable monitors cannot be deployed, and thus, the data
from dynamic monitoring networks are not part of the results.
However, the dynamic data from mobile monitors can be
accommodated in the proposed framework, which is likely
to further improve the model’s accuracy. This study shows
the proof of concept for providing a prediction framework
for dynamic air pollution and meteorological data, in which
a grid size of 5 km is assumed. A smaller grid size will
increase the number of models and thus the requirement
of computational efforts but may also increase the spatial
accuracy (45).

In the future, the authors wish to utilize the data from
the dynamic monitors for the prediction framework, exploit
a way to reduce the need for a model for each grid, and
implement a concept of hybrid grid sizes for the dynamic
data. Since the framework is transferable, the planners and
practitioners can employ the same models in different cities
and use the predicted values to provide green travel routes.
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