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Abstract

The complementary nature of audio and video information is well

established. Video information about mouth shape and position can

be used to interpret audio information in a better way. In this thesis,

decisions made from audio and video information separately are late

fused using Dempster Schafer (DS) theory, which provides a soft belief

function for fusing information from independent modalities.

Speaker diarization is the problem of finding out speaking times of

each speaker and grouping together homogeneous segments. This is

an increasingly relevant problem in meeting room scenarios and for

automatic meeting documentation. In this thesis, speaker diarization

using audio only information is performed using Bayesian Information

Criteria (BIC) and video based diarization is performed using Hidden

Markov Model (HMM) modeling of speaking and non speaking seg-

ments and later the two decisions are fused using DS theory.

Speech recognition is the problem of finding out what is being said

by listening to or by seeing someone speak or both. Applications of

speech recognition are numerous and include better human-computer

interface and speech controlled applications. In this thesis, speech

recognition is performed using HMM modeling of audio and video

features, and later the decisions made using these modalities are fused

using DS theory.

Chapter 2 describes how humans make use of information gathered

from multiple modalities like vision, hearing, touch, etc. to make

better decisions based on integration of information from all these

senses. Chapter 3 describes soft belief function and how is it used

to combine audio and video information. The problem of “Speaker

iv



Diarization” and “Audio Visual Speech Recognition” are explained

in detail in Chapter 4 & 5. Chapter 6 describes the databases on

which experiments are performed. Experimental results are shown in

Chapter 7 before concluding in Chapter 8.

Based on the results of the experiments conducted for speaker di-

arization and audio visual speech recognition on standard databases,

it can be concluded that video information when fused with audio

information using a soft belief function such as DS theory gives bet-

ter results than unimodal information based speaker diarization and

speech recognition.
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1

Introduction

1.1 Motivation

Speech recognition is a very interesting as well as challenging area of research. It’s

applications which include voice dialing, call routing, remote appliance control

and content-based spoken audio search, simple data entry, preparation of struc-

tured documents and in speech-to-text processing are immense and much helpful

to all sections of society. It also finds applications in diverse fields of health

care and military. Motivation for this work comes from the human perception

of speech [11]. We not only listens to speech but also see it. Audio is highly

susceptible to noise, so performance of speech based systems falls dramatically

in noisy environments. For the speech based systems to approach human level of

performance and for speech to become a truly pervasive user interface we need

some non traditional approaches to increase the performance of such systems.

Visual speech is one such approach for making large improvements in high noise

environments and has the potential of being channel and task independent [3].

1.2 Multi modal speech processing

Video information is quite useful in understanding speech. Lipreading is useful to

all sighted people, including those with normal hearing and those with impaired

hearing [7]. Biological systems, such as human sensory systems, can robustly and

1



1.2 Multi modal speech processing

accurately localize objects even in the presence of significant amount of noise.

One of the reasons behind this ability is the fact that they rely on the integration

of several different senses instead of just a single sense [5]. Sense integration is

effective because it allows the perception system to be applicable in a greater

number of situations than would be possible with a single sense alone. Also, a

given source of noise is likely to affect only one of the senses. For example, a

vision system is unaffected by background sound sources in the environment, just

as a sound localization system is unaffected by rapidly varying room lighting.

Visible articulators, primarily the lips, teeth and tongue, are among those

whose configuration determines and is correlated with the resonances of vocal

tract.

Figure 1.1: Block diagram of audio visual speech recognition system

Multi-modal speech recognition, in which acoustic features and other informa-

tion are jointly used, has been investigated and found to increase robustness and

thus improve the accuracy of audio-visual speech recognition systems [4]. Most

of the multi-modal methods use visual features, typically lip information, in ad-

dition to the acoustic features. In most of the studies, a lip contour is extracted

from images by mouth tracking and pattern matching techniques [8].

In this work, audio and video modalities has been used to carry out the

experiments.

2
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1.3 Multi modal information fusion

1.3 Multi modal information fusion

Fusing different data channels and different representations can bring robustness

and increased accuracy to learning algorithms. The mathematical and theoreti-

cal models developed in this field allow for a two-way information flow between

computer science and cognitive sciences. Experimental results have shown that

two modalities need not be in perfect temporal synchrony for fusion. If there is a

fixed spatial or temporal distance between two percepts, and the percepts show

structural similarities across these distances, this may lead to fusion as well.

In general, we can categorize methods of audio-visual information fusion into

two broad categories: feature fusion (or early integration) and decision fusion

(or late integration) [1], which are shown in Figure 1.2. In the former approach,

the features of the two modalities are concatenated to form a composite feature

vector, which is used as the classifier for recognition. In the latter approach,

the features of each modality are used for recognition separately and, then, the

outputs of the two classifiers are combined for the final recognition result.

Figure 1.2: Models for integrating acoustic and visual information. (a) Feature
fusion. (b) Decision fusion

3
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1.4 Applications of audio visual speech processing addressed in this
thesis

In the decision fusion approach [17] it is relatively easy to employ an adap-

tive weighting scheme for controlling the amount of the contribution of the two

modalities to the final recognition according to the noise level in the speech,

which is because the acoustic and the visual signals are processed independently.

The decision fusion allows flexible modeling of the temporal coherence of the two

information streams, whereas the feature fusion assumes a perfect synchrony be-

tween the acoustic and the visual feature sequences. It is known that there exists

an asynchronous characteristic between the acoustic and the visual speech: The

lips and the tongue sometimes start to move up to several hundred milliseconds

before the acoustic speech signal, which makes it difficult to synchronize the two

signals.

1.4 Applications of audio visual speech process-

ing addressed in this thesis

There are a lot of applications of audio visual speech processing. In this thesis,

main focus is on two applications of audio visual speech processing viz “Speaker

Diarization”’ and “Audio Visual Speech Recognition”

1.4.1 Speaker diarization

In the context of audio document indexing and retrieval, speaker diarization is

the process which detects speakers turns and regroups those uttered by the same

speaker. It is generally based on a first step of segmentation (often preceded by

a speech detection phase) that consists of partitioning the regions of speech into

segments (each segment must be as long as possible and must contain ideally

the speech of only one speaker), followed by a clustering step that consists of

giving the same label to segments uttered by the same speaker. Ideally, each

cluster corresponds to only one speaker and vice versa. Most of the systems

operate without specific a priori knowledge of speakers or their number in the

document, but in spite of tremendous progress, they generally need specific tuning

and parameter training.

4



1.4 Applications of audio visual speech processing addressed in this
thesis

1.4.2 Audio visual speech recognition

Audio Visual Speech Recognition (AVSR) is a technique that uses image pro-

cessing capabilities in lip reading systems to aid audio based speech recognition

systems in recognizing indeterministic phones or giving preponderance among

near probability decisions. Each system, lip reading and audio based speech

recognition works separately and then the information gathered from them is

fused together to make a better decision.

Aim of AVSR is to exploit the human perceptual principle of sensory inte-

gration (currently, the joint use of audio and visual information) to improve the

recognition of human activity (e.g. speech recognition, speech activity, speaker

change, etc.), intent (e.g. speech intent) and identity (e.g: speaker recognition),

particularly in the presence of acoustic degradation due to noise and channel, and

the analysis and mining of multimedia content.

5



2

Audio visual speech processing

by humans

2.1 Speech production system in humans

Speech is a natural form of communication for human beings. Continuous speech

is a set of complicated audio signals, which are usually classified as voiced or un-

voiced, but in some cases they can be something between these two classes. Voiced

sounds consist of fundamental frequency (F0) and its harmonic components pro-

duced by vocal cords (vocal folds). The vocal tract modifies this excitation signal

causing formant (pole) and sometimes antiformant (zero) frequencies.

Speech production mechanism is composed of four stages:

• Language processing, in which an utterance contents are converted into

phonemic symbols in the brain’s language center.

• Motor command generation to vocal organs in brain’s motor center.

• Articulatory movement of the vocal organs based on these motor commands

for the production of speech.

• Emission of air sent from the lungs in the form of speech.

When speaking, the air flow is forced through the glottis between the vocal

cords and the larynx to the three main cavities of the vocal tract, the pharynx

6



2.2 Speech perception

Figure 2.1: Human vocal organs (1) Nasal cavity, (2) Hard palate, (3) Alveoral
ridge, (4) Soft palate (Velum), (5) Tip of the tongue (Apex), (6) Dorsum, (7)
Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal cords, (12) Vocal
cords, (13) Larynx, (14) Esophagus, and (15) Trachea

and oral and nasal cavities. From the oral and nasal cavities the air flow exits

through the mouth and nose respectively. The V-shaped opening between the

vocal cords, called the glottis, is the most important sound source in the vocal

system. Vocal cords may act in several different ways during speaking. The most

important function is to modulate the air flow by rapidly opening and closing,

causing buzzing sound from which vowels and voiced consonants are produced.

The fundamental frequency of vibration depends on the mass and tension and is

about 110 Hz, 200 Hz, and 300 Hz for men, women, and children, respectively.

2.2 Speech perception

Speech perception is the process by which the sounds of language are heard,

interpreted and understood [21]. It is closely linked to the fields of phonetics and

phonology in linguistics and cognitive psychology and perception in psychology.

Usually speech perception is studied in the context of pattern recognition. Signals

are presented to humans and they make some objective judgment about what they

heard.

7
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2.2 Speech perception

Figure 2.2: Human speech production and perception process

The process of perceiving speech begins at the level of the sound signal and

the process of audition [11]. After processing the initial auditory signal, speech

sounds are further processed to extract acoustic cues and phonetic information.

This speech information can then be used for higher-level language processes, as

in word recognition.

Most of the linguistic interactions occur within a face-to-face context, in which

acoustic (speech) as well as visual information (mouth movements) are involved in

message comprehension. Though humans are able to understand words without

any visual input, audio-visual perception improves language comprehension, spe-

cially when the acoustic information is noisy. Integration of information on verbal

messages provided by the two sensory (acoustical and visual) modalities could be

based on similar patterns of time-varying features common to both the acoustical

and the visual input. More specifically, the timing of changes in vocalization is

visible as well as audible in terms of their time-varying patterns.

8
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2.3 Units in audio-visual speech processing

2.3 Units in audio-visual speech processing

As alphabets are the basic unit of any written language, in the same way there

are alphabets defined for spoken language and visual speech. These are called

phonemes and visemes [23] respectively.

2.3.1 Units in audio speech processing

A phoneme is the smallest segmental unit of sound employed to form mean-

ingful contrasts between utterances. A phoneme is a group of slightly different

sounds which are all perceived to have the same function by speakers of the

language. Every language has a set of phonetic alphabet and a different set of

possible phonemes and their combinations. In some languages, each letter in the

spelling system represents one phoneme. However, in English language there is a

poor match between spelling and phonemes and it has about 40 phonemes. The

phonetic alphabet is usually divided in two main categories, vowels and conso-

nants. Vowels are always voiced sounds and are produced with the vocal cords

in vibration, while consonants may be either voiced or unvoiced. Vowels have

considerably higher amplitude than consonants and they are also more stable

and easier to analyze and describe acoustically. Because consonants involve very

rapid changes, they are more difficult to synthesize properly.

2.3.2 Units in visual speech processing

As phonemes are basic units of audio speech, in the same way visemes are defined

as basic units of visual speech [23]. A viseme is a representational unit used to

classify speech sounds in the visual domain. This term was introduced based on

the interpretation of the phoneme as a basic unit of speech in the acoustic domain.

A viseme describes the particular facial and oral positions and movements that

occur alongside the voicing of phonemes.

Phonemes and visemes do not always share a one-to-one correspondence. of-

ten, several phonemes share the same viseme. thirty two visemes are required in

order to produce all possible phoneme with the human face. Visemes can help

with understanding speech - if the phoneme is distorted or muffled, the viseme

9



2.4 Multi modal integration by humans

Table 2.1: Visemes as phoneme classes

Viseme Phoneme class
0 silence
1 f v w
2 s z
3 S Z
4 p b m
5 g k x n N r j
6 t d
7 l
8 I e:
9 E E:
10 A
11 @
12 i
13 O Y y u 2: o: 9 9: O:
14 a:

accompanying it can help to clarify what the sound actually was. Thus, visual

and auditory components work together while communicating orally.

2.4 Multi modal integration by humans

Humans have five major senses: vision, hearing, touch, smell, and taste. The

actual number of sensory modalities that an organism has is hard to find. Each

sensory modality can be further divided into sub modalities. In vision, the pro-

cessing of color, shape, orientation, motion, and depth may occur somewhat

separately, and form somewhat independent sub modalities of vision.

Multi modal integration (multi sensory integration) is the study of how infor-

mation from the different sensory modalities, such as sight, sound, touch, smell,

self-motion and taste, may be integrated by the human nervous system. Such

integration may result in unified perceptual experiences that are coherent across

sensory modalities. Multi modal integration also deals with how different sensory

modalities interact with one another and alter each other’s processing.

In the case of speech perception, video plays a major role in understanding

10



2.4 Multi modal integration by humans

Figure 2.3: Multi modal information fusion by humans

what the speaker is speaking, specially when the communication is taking place

in noisy environment. This is because of the fact that audio is highly susceptible

to noise but video is not, so in noisy environments such as crowded areas, or in

case of loud background noise, audio quality is too low, in such cases one can

infer what the speaker is speaking by seeing the lip movement of the speaker.

11
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3

Multi modal information fusion

using a soft belief function

A multimedia content is composed of several streams that carry information in

audio, video or textual channels. Classifying and clustering multimedia contents

require extraction and combination of information from these different modali-

ties [13]. The streams constituting a multimedia content are naturally different

in terms of scale, dynamics and temporal patterns. These differences make com-

bining the information sources using classic combination techniques difficult.

Depending on the type of information in a certain modality, different levels of

information fusion [22] are defined. These are described as below:

• Sensor level fusion:

Consolidation of raw data obtained from multiple sensors or multiple snaps

from a single sensor.

• Feature level fusion:

Consolidation of the feature sets originating from multiple modalities into

a single feature set by normalization or transformation schemes.

• Score-level fusion:

Consolidation of the score outputs from different modalities to generate a

new score to be used for decision making.

12



3.1 Conventional information fusion schemes

• Rank-level fusion:

Consolidates the rank output from different modalities to derive a consensus

rank for each hypothesis.

• Decision-level fusion:

Combining final recognition decisions of different modalities.

Figure 3.1: Levels of multi modal information fusion

Various methods have been proposed to fuse the multi modal information

obtained from audio and video modalities, which are being described in Section

3.1.

3.1 Conventional information fusion schemes

A number of techniques are available for audio-visual information fusion, which

can be broadly grouped into feature fusion and decision fusion methods. The first

13
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3.1 Conventional information fusion schemes

ones are the simplest, as they are based on training a traditional HMM classifier

on the concatenated vector of the audio and visual features, or any appropriate

transformation of it. Decision fusion methods combine the single-modality (audio-

only and visual-only) HMM classifier outputs to recognize audio-visual speech.

Specifically, class conditional log-likelihoods from the two classifiers are linearly

combined using appropriate weights that capture the reliability of each classifier,

or data stream. This likelihood recombination can occur at various levels of

integration, such as the state, phone, syllable, word, or utterance level.

3.1.1 Concatenative feature fusion

In this information fusion scheme [17], feature vectors obtained from audio and

video modalities are concatenated and the concatenated vector is used as a single

feature vector.

Let us denote the time synchronous audio and visual feature vectors at instant

t, by O
(t)
S ∈ RDs of dimension Ds , where s = A, V respectively. The joint audio-

visual feature vector is then simply the concatenation of the two, namely

O(t) = [O
(t)
A

T
, O

(t)
V

T
]
T

∈ RD (3.1)

where D = DA +DV

These feature vectors are then trained to generate HMMs as if generated from

single modality and are used for the purpose of speech recognition.

3.1.2 Hierarchical fusion using feature space transforma-

tions

In general, the visual features currently used contain less speech classification

power than audio features, even in the case of extreme noise in the audio channel.

One would therefore expect that a lower-dimensional representation of Equation

3.1 could lead to equally, or even better, HMM performance, given the problem

of accurate probabilistic modeling in high-dimensional space.

It makes a reasonable choice to consider Linear Discriminant Analysis (LDA)

as a means of obtaining such a dimensionality reduction. Indeed, LDA achieves

14



3.1 Conventional information fusion schemes

the best discrimination among the classes of interest on the basis of the data alone,

without any a-priori bias in favor of any of the two feature streams. Similarly

LDA is followed by an Maximum Likelihood Linear Transform (MLLT) based

data rotation, in order to improve maximum likelihoodness of the data [17]. This

method amounts to a hierarchical LDA / MLLT application on the original audio

and visual features, as depicted in Figure 3.2, and it is therefore referred to as

HiLDA (hierarchical LDA).

Figure 3.2: Hierarchical LDA / MLLT feature extraction (AV-HiLDA)

The final audio-visual feature vector is

O
(t)
HiLDA = PMLLT × PLDA × O(t) (3.2)

Where Matrices PLDA and PMLLT denote the LDA projection and MLLT rotation

matrices.

3.1.3 Decision fusion with adaptive weighting scheme

Decision fusion approach is a good choice for designing a noise-robust AVSR

system. Decision fusion in HMM-based AVSR systems is performed by utilizing

the outputs of the acoustic and the visual HMMs for a given audiovisual speech

datum and then fuse them adaptively to obtain noise-robustness over various

noise environments [14].

When the acoustic and the visual features (OA and OV ) of a given audio-visual

speech datum of unknown class are obtained, the recognized utterance class C∗

15
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3.1 Conventional information fusion schemes

is given by

C∗ = argmax
i

{γ × logP (OA|λi
A) + (1 − γ) × logP (OV |λi

V )} (3.3)

where λi
A and λi

V are the acoustic and the visual HMMs for the ith class, re-

spectively, and logP (OA|λi
A) and logP (OV |λi

V ) are their outputs (log-likelihoods).

The integration weight γ determines how much the final decision relatively de-

pends on each modality. It has a value between 0 and 1, and varies according to

the amount of noise contained in the acoustic speech. When the acoustic speech

is clean, the weight should be large because recognition with the clean acous-

tic speech usually outperforms that with the visual speech; on the other hand,

when the acoustic speech contains much noise, the weight should be sufficiently

small. Therefore, for noise-robust recognition performance over various noise con-

ditions, it is important to automatically determine an appropriate value of the

weight according to the noise condition of the given speech signal.

3.1.4 Coupled HMM based method for information fusion

A Coupled Hidden Markov Model (CHMM) is a generalization of the HMM

suitable for a large variety of multimedia applications that integrate two or more

streams of data [16]. A coupled HMM can be seen as a collection of HMMs,

one for each data stream, where the discrete nodes at time t for each HMM are

conditioned by the discrete nodes at time t-1 of all the related HMMs.

Parameters of a CHMM are defined as follows

πc
o(i) = P (qc

t = i) (3.4)

bct(i) = P (Oc
t |qc

t = i) (3.5)

ac
i|j,k = P (qc

t = i|q0
t−1 = j, q1

t−1 = k) (3.6)

where qt
c is the state of the couple node in the cth stream at time t. In a

continuous mixture with Gaussian components, the probabilities of the observed
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3.2 Soft fusion using Dempster-Schafer theory

Figure 3.3: The audio-visual coupled HMM

nodes are given by:

bct(i) =

Mc
i∑

m=1

wc
i,mN(Oc

t , μ
c
i,m, U

c
i,m) (3.7)

where μc
i,m and U c

i,m are the mean and covariance matrix of the ith state of

a coupled node, and mth component of the associated mixture node in the cth

channel. M c
i is the number of mixtures corresponding to the ith state of a coupled

node in the cth stream and the weight wc
i,m represents the conditional probability

P (sc
t = m|qc

t = i) where sc
t is the component of the mixture node in the cth stream

at time t.

3.2 Soft fusion using Dempster-Schafer theory

Soft information fusion refers to a more relaxed and more flexible system to

combine information from audio and video modalities for making better decision.

The Dempster Shafer (DS) theory is a mathematical theory of evidence [20].

It allows one to combine evidence from different sources and arrive at a degree

of belief (represented by belief function) that takes into account all the available

evidences. This theory was first developed by Arthur P. Dempster and Glenn

Shafer.
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3.2 Soft fusion using Dempster-Schafer theory

Probability theory can effectively model uncertainty. However, there is some

information probability cannot describe. For example, ignorance. Consider the

following example: If we have absolutely no information about the coin, in prob-

ability theory, we will assume that it would be 50% head and 50% tail. However,

in another scenario, if we know the coin is fair, so we know for a fact that it

would be 50% head and 50% tail. Therefore, in the two different scenarios, we

arrive at the same conclusion. So representing ignorance in probability theory

becomes a problem. Dempster Shafer theory can effectively solve this problem.

In Dempster Shafer Theory, for the ignorance scenario, the belief of Head and

the belief of Tail would be 0, whereas for the fair coin scenario, the belief of Head

would be 0.5, and that of Tail would also be 0.5.

DS theory is a generalization of the Bayesian theory of subjective probability.

While the Bayesian theory requires probabilities for each question of interest,

belief functions allow us to have degrees of belief for one question on probabilities

of a related question.

Dempster Shafer (DS) theory of evidence, allows the representation and com-

bination of different measures of evidence. Let

Θ = (θ1, ..., θk) (3.8)

be a finite set of mutually exclusive and exhaustive hypothesis referred as single-

tons and Θ is referred as a frame of discernment. A basic probability assignment

is a function m such that

m : 2Θ → [0, 1] (3.9)

where ∑

A⊂Θ

m(A) = 1, m(Φ) = 0 (3.10)

If ¬A is complementary set of A then by DS Theory

m(A) + m(¬A) < 1 (3.11)

Which is in contrast to probability theory. This divergence from probability is

called “Ignorance”. The function assigning sum of masses of all the subsets of
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3.3 Decision making using soft belief functions

the set of interest is called the belief function and is given by

Bel(A) =
∑

B⊂A

m(B) (3.12)

Belief function assigned to each subset of θ is a measure of total belief in the

preposition represented by the subset.

3.3 Decision making using soft belief functions

This section describes the proposed methodology of using the DS theory to com-

bine decisions from the audio and video modalities. The degree of belief for a deci-

sion is determined from subjective probabilities obtained from the two modalities

and then are combined using Dempster’s rule making a reasonable assumption

that the modalities are independent.

The DS theory defines a mass distribution based on the reliability of the in-

dividual modalities. Hence we first formulate a problem being looked upon using

individual modalities and then fuse them using DS theory. Let

Xaudio : The audio feature based decision.

Xvideo : The video feature based decision.

Then let us take a two hypothesis problem (H1 or H2) of two exclusive and

exhaustive classes, which we are looking to classify with the help of above feature

vectors.

Both Xaudio and Xvideo can hypothesize as H1 or H2. Thus the focal elements

of both the features are H1, H2 and Ω, where Ω is the whole set of classes

{H1, H2}. The unimodal source reliabilities provide us with a certain degree of

trust that we should have on the decision of that modality. The reliabilities of

audio and video based decisions is based on the number of times the Xaudio and

Xvideo classifies the given data correctly. At a particular time interval, the audio

and video features give a certain probability of classification. If P(Xaudio = H1)

= p1, then the mass distribution is maudio(H1)= xp1. Similarly, the mass assigned

to H2 is maudio(H2) = x(1-p1). The remaining mass, is allocated to the whole set
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3.3 Decision making using soft belief functions

Table 3.1: Reliability of the unimodal Features

Classification Feature Reliability
Audio : Xaudio x
Video : Xvideo y

of discernment, maudio(Ω) = 1 - x. Similarly we assign a mass function for the

video feature based decision. Since the audio and video feature based decisions are

independent of each other, we can use Dempster’s rule of combination for arriving

at a joint decision. When the decisions of the two modalities are inconsistent,

their product of masses is assigned to a single measure of inconsistency, say k.

The confusion-matrix as obtained for the audio-video features combined is shown

in Table 3.2.

Table 3.2: The confusion-matrix of probability mass functions for multi modal
features

mv(H1)= yp2 mv(H2) = y(1 − p2) mv(Ω) = 1 − y
ma(H1)=xp1 ma,v(H1)=xyp1p2 k = xyp1(1 − p2) ma,v(H1)=x(1 − y)p1

ma(H2)=x(1 − p1) k = xyp2(1 − p1) ma,v(H2)= xy(1 − p1)(1 − p2) ma,v(H2)=x(1 − y)(1 − p1)
ma(Ω)= 1 − x ma,v(H1)= (1 − x)yp2 ma,v(H2)=(1 − x)y(1 − p2) ma,v(Ω)=(1 − x)(1 − y)

From Table 3.2, We define total inconsistency k as

k = xyp1(1 − p2) + xyp2(1 − p1) (3.13)

Hence the combined belief in hypothesis H1 and H2, obtained from the multiple

modalities (speech and video) can now be formulated as

Bel(H1) =
xyp1p2 + xp1(1 − y) + (1 − x)yp2

(1 − k)
(3.14)

Bel(H2) =
xy(1 − p1)(1 − p2) + x(1 − p1)(1 − y) + (1 − x)y(1 − p2)

(1 − k)
(3.15)

Note that the mass functions have been normalized by the factor (1-k). The

Belief function hence computed in Equation 3.14 & 3.15, gives a soft decision

measure for choosing a better hypothesis from the two possible classifications.
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3.3 Decision making using soft belief functions

This two hypothesis problem can be extended to multiple hypothesis prob-

lem. Let us consider a multiple hypothesis problem having N possible hypothesis:

H1: Hypothesis 1

H2: Hypothesis 2

...

HN : Hypothesis N

Recognition probabilities from individual modalities are given by Equation

3.16

P (Xaudio = Hi) = Ai;P (XV ideo = Hi) = Vi; 1 ≤ i ≤ N (3.16)

The confusion-matrix for this N hypothesis problem is shown in Table 3.3.

Table 3.3: The confusion-matrix of probability mass functions for multi modal
features

mv(H1)= yV1 mv(H2) = yV2 ... mv(HN )= yVN mv(Ω) = 1 − y
ma(H1)=xA1 ma,v(H1)=xyA1V1 k = xyA1V2 ... k = xyA1VN ma,v(H1)=x(1 − y)A1
ma(H2)=xA2 k = xyA2V1 ma,v(H2)= xyA2V2 ... k = xyA2VN ma,v(H2)=x(1 − y)A2

... ... ... ... ... ...
ma(HN )=xAN k = xyAN V1 k = xyANV2 ... ma,v(HN )= xyANVN ma,v(HN )=x(1 − y)AN
ma(Ω)= 1 − x ma,v(H1)= (1 − x)yV1 ma,v(H2)=(1 − x)yV2 ... ma,v(HN )=(1 − x)yVN ma,v(Ω)=(1 − x)(1 − y)

From Table 3.3, the total inconsistency k is given by

k =

N∑

i=1
i�=j

N∑

j=1

xyAiVj (3.17)

Hence the combined belief in hypothesis Hk, 1 ≤ k ≤ N , obtained from the

multiple modalities (speech and video) can now be formulated as

Bel(Hk) =
xyAkVk + x(1 − y)Ak + (1 − x)yVk

(1 − k)
(3.18)
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4

Speaker diarization using a soft

belief function

“Speaker Diarization” is the process of partitioning an input audio stream into

homogeneous segments according to the speaker identity. It can enhance the

readability of an automatic speech transcription by structuring the audio stream

into speaker turns and, when used together with Speaker recognition systems,

by providing the speaker’s true identity. It is used to answer the question “who

spoke when?”. Speaker Diarization is a combination of “Speaker Segmentation”

and “Speaker Clustering”. It first aims at finding speaker change points in an

audio stream, and then grouping together speech segments on the basis of speaker

characteristics.

Figure 4.1: Block diagram of an audio based speaker diarization system
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4.1 Audio based speaker diarization

4.1 Audio based speaker diarization

This section describes speaker diarization being achieved using audio information

only. This section would include basics of audio processing, audio feature vector

extraction and then application of speaker diarization.

4.1.1 Speech feature extraction

Mel Frequency Cepstral Coefficients (MFCC), are most commonly used feature

vectors for speech processing.

In speech processing, Mel Frequency Cepstrum(MFC) represents short term

power spectrum of the sound derived from the linear cosine transform of a log

power spectrum on a nonlinear mel scale of frequency.

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively

make up an MFC. The difference between the cepstrum and the mel-frequency

cepstrum is that in the MFC, the frequency bands are equally spaced on the mel

scale, which approximates the human auditory system’s response more closely

than the linearly-spaced frequency bands used in the normal cepstrum. This

frequency warping allows for better representation of sound.

The mel scale which was proposed by Stevens, Volkman and Newman in

1937 is a perceptual scale of pitches judged by listeners to be equal in distance

from one another. The reference point between this scale and normal frequency

measurement is defined by equating a 1000 Hz tone, 40 dB above the listener’s

threshold, with a pitch of 1000 mels. Above about 500 Hz, larger and larger

intervals are judged by listeners to produce equal pitch increments. As a result,

four octaves on the hertz scale above 500 Hz are judged to comprise about two

octaves on the mel scale.

conversion of the frequency between mel and Hertz is done using the formula

m = 2595 × log10(
f

700
+ 1) (4.1)

f = 700 × (10m/2595 − 1) (4.2)
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4.1 Audio based speaker diarization

A cepstrum is the result of taking the Fourier transform (FT) of the decibel

spectrum as if it was a signal. the power cepstrum (of a signal) is the squared

magnitude of the Fourier transform of the logarithm of the squared magnitude of

the Fourier transform of the signal.

power cepstrum of signal = |F{log(|F{signal}|2)}|2 (4.3)

procedure to extract MFCC’s from an audio signal is as follows:

• Take the Fourier transform of the windowed excerpt of the audio signal.

• Map the powers of the spectrum obtained above onto the mel scale, using

triangular overlapping windows.

• Take the log of power at each of the mel frequencies.

• Take the discrete cosine transform of the list of mel log powers considering

them to be a signal.

• The MFCCs are the amplitudes of the resulting spectrum.

Figure 4.2: Block diagram describing MFCC calculation from speech signal
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4.1 Audio based speaker diarization

MFCCs are commonly used as feature vectors in speech and speaker recogni-

tion systems, which can automatically recognize numbers spoken into a telephone

and can recognizing people from their voice. MFCCs are also increasingly finding

use in music information retrieval applications such as genre classification and

audio similarity measures.

One of the shortcomings of MFCCs is that they are not very robust in the

presence of additive noise, and so it is common to normalize their values in speech

recognition systems to nullify the influence of noise.

4.1.2 Traditional audio based speaker diarization meth-

ods

Speaker diarization can be achieved by speaker clustering [2]. This problem is

formulated in an ergodic HMM framework with minimum duration constraint.

If X = {x1, x2, ..., xT} is the audio data to be segmented, we want to find

the optimal number of clusters K∗
s and there respective Gaussian mixture models

(GMM) λK∗
s
, that produces the best segmentation of the data X according to

(λK∗
s
, K∗

s ) = arg max
λKs ,Ks

P (X, qbest|λKs, Ks) (4.4)

where qbest is the Viterbi path with the highest likelihood. There is one state

q for each speaker cluster. Thus, we want to find the set of clusters and their

acoustic models that maximize the likelihood of the data, as well as the associated

speaker segmentation based on this HMM topology.

The algorithm starts with over-clustering the data, i.e. clustering the data in

terms of more than the expected number of classes (large initial value for Ks).

This is followed by an agglomerative clustering approach where best candidate

clusters are merged in an iterative fashion.

One more approach for speaker diarization in a meeting room scenario using

audio information only is to determine direction of arrival using a multichannel

microphone array [18]. The signals coming from the different microphones are

Wiener filtered to improve the SNR. Then, one of the signals (microphones), the

one with the highest SNR, is selected as a reference channel. The Time Delay Of
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4.1 Audio based speaker diarization

Arrival (TDOA) between each of the other channels and the reference channel is

calculated. In order to estimate the TDOA between segments corresponding to

two microphones, a modified version of the Generalized Cross Correlation with

phase transform (GCCPHAT (f)) is used.

4.1.3 Bayesian information criteria and its application to

unimodal speaker diarization

4.1.3.1 Bayesian information criteria(BIC)

Bayesian Information Criterion (BIC) also known as Schwarz criterion is a crite-

rion for model selection among a class of parametric models with different num-

bers of parameters. Choosing a model to optimize BIC is a form of regularization.

When estimating model parameters using maximum likelihood estimation, it is

possible to increase the likelihood by adding additional parameters, which may

result in over fitting. The BIC resolves this problem by introducing a penalty

term for the number of parameters in the model.

The BIC was developed by Gideon E. Schwarz, who gave a Bayesian argument

for adopting it. It is very closely related to the Akaike Information Criterion

(AIC).

BIC value is given by the formula:

BIC(Mi) = log(L(Xi,Mi)) − λ
1

2
#(Mi)log(Ni) (4.5)

where:

• L(Xi,Mi) = likelihood of the data.

• Ni = number of frames in the acoustic segment under consideration.

• #(Mi) = number of free parameters to estimate corresponding to the model

Mi.

• λ is a free parameter dependent on the data being modeled.

Given any two estimated models, the model with the higher value of BIC is

the one to be preferred. Higher BIC implies either fewer explanatory variables,
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4.1 Audio based speaker diarization

better fit, or both. It is important to note that the BIC can be used to compare

estimated models only when the numerical values of the dependent variable are

identical for all estimates being compared.

Few important characteristics of BIC are as follows:

• It does not depend on the prior.

• It can measure the efficiency of the parameterized model in terms of pre-

dicting the data.

• It has a penalty term for the complexity of the model where complexity

refers to the number of parameters in model.

• It is equal to the minimum description length criterion but has a negative

sign.

• It can be used to choose the number of clusters according to the intrinsic

complexity present in a particular dataset.

BIC is been widely used for model identification in time series and linear re-

gression. It can be applied quite widely to any set of maximum likelihood-based

models. However, it should be noted that in many applications (for example,

selecting a black body or power law spectrum for an astronomical source), BIC

simply reduces to maximum likelihood selection because the number of parame-

ters is equal for the models of interest.

4.1.3.2 Speech based unimodal speaker diarization

The BIC (Bayesian Information Criterion) for segmentation and clustering based

on MOG (Mixture Of Gaussian) is used for the purpose of speech based unimodal

speaker diarization. The likelihood distance is calculated between two segments

to determine whether they belong to the same speaker or not. The distances used

for acoustic change detection can also be applied to speaker clustering in order

to infer whether two clusters belong to the same speaker. For a given acoustic

segment Xi, the BIC value of a particular model Mi, indicates how well the model

fits the data, and is determined by Equation 4.5
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4.1 Audio based speaker diarization

In order to detect the audio scene change between two segments with the help

of BIC, one can define two hypothesis.

Hypothesis 0 is defined as:

H0 : x1, x2, ..., xN ∼ N(μ,Σ) (4.6)

which considers the whole sequence to consist no speaker change.

Hypothesis 1 is defined as:

H1 : x1, x2, ..., xL ∼ N(μ1,Σ1); xL+1, xL+2, ..., xN ∼ N(μ2,Σ2) (4.7)

is the hypothesis that a speaker change occurs at time L.

A check of whether the hypothesis H0 better models the data as compared to

the hypothesis H1, for a mixture of Gaussian case can be done by computing a

function similar to the generalized likelihood ratio as

ΔBIC(Mi) = log(L(X,M)) − (log(L(Xi,Mi))

+log(L(Xj ,Mj))) − λΔ#(i, j)log(N)
(4.8)

where Δ#(i, j) is the difference in the number of free parameters between the

combined and the individual models.

Figure 4.3: Speech based unimodal speaker change detection
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4.2 Modeling visual speech activity using HMMs

When the BIC value based on mixture of Gaussian model exceeds a certain

threshold, an audio scene change is declared. Note that the Mel Frequency Cep-

stral Coefficients (MFCC) are used as feature vectors in all the experiments.

Figure 4.3 illustrates a sample speaker change detection plot with speech

information only using BIC. The illustration corresponds to the data from the

AMI multi modal corpus. Speaker changes have been detected at 24, 36, 53.8

and 59.2 seconds.

4.2 Modeling visual speech activity using HMMs

Visual speech activity can be effectively modeled using Hidden Markov Models

(HMMs).

4.2.1 Basics of HMM

A hidden Markov model (HMM) is a statistical model in which the process being

modeled is assumed to be a Markov process with unobserved state. An HMM

can be considered as the simplest dynamic Bayesian network [19].

A Markov process, named after the Russian mathematician Andrey Markov,

is a time-varying random phenomenon for which the conditional probability dis-

tribution of future states of the process depend only upon the present state; that

is, given the present, the future does not depend on the past.

The HMM is a powerful statistical tool for modeling generative sequences

that can be characterized by an underlying process generating an observable se-

quence. HMMs have found application in many areas including signal processing,

handwriting recognition, gesture recognition and in particular speech process-

ing. These are also been applied with success to low level NLP tasks such as

part-of-speech tagging, phrase chunking, and extracting target information from

documents.

Markov models are of two types, regular Markov models and hidden Markov

models. In a regular Markov model, the state is directly visible to the observer,

and therefore the state transition probabilities are the only parameters. Figure

4.4 describes an example of a Markov process.
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4.2 Modeling visual speech activity using HMMs

Figure 4.4: Example of a regular Markov process

This model describes a simple model for a stock market index. It has three

states, Bull, Bear and Even, and three index observations up, down, unchanged.

The model is a finite state one, with probabilistic transitions between states.

Given a sequence of observations, one can easily find out the state sequence that

had produced those observations. For example, for the observation sequence

of up-down-unchanged, the state sequence should be: Bull-Bear-Even, and the

probability of the sequence is simply the product of the transitions, in this case

0.2 × 0.2.

In a hidden Markov model, the state is not directly visible, but output de-

pendent on the state is visible. Each state has a probability distribution over

the possible output tokens. Therefore the sequence of tokens generated by an

HMM gives some information about the sequence of states. Here the adjective

“hidden” refers to the state sequence through which the model passes, not to the

parameters of the model. Figure 4.5 describes how we can extend the previous

model to HMM case.

This new model now allows all observation symbols to be emitted from each

state with a finite probability. This change makes the model much more ex-

pressive. In this case, a bull market would have both good days and bad days,

but there would be more good ones. The key difference is that now if we have
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Figure 4.5: Example of a hidden Markov process

the observation sequence up-down-down then we cannot say exactly which state

sequence may have produced these observations and thus the state sequence is

hidden. We can however calculate the probability of the model producing this

sequence, as well as which state sequence was most likely to have produced the

observation.

4.2.2 Definitions and notations of a HMM

The formal definition of an HMM is as follows

λ = (A,B, π) (4.9)

S represents state alphabet set, having a total of N states and V represents

observation alphabet set, having a total of M observations

S = (s1, s2, ..., sN) (4.10)

V = (v1, v2, ..., vM) (4.11)
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We define Q as a fixed state sequence of length T, and corresponding obser-

vation sequence be O

Q = (q1, q2, ..., qT ) (4.12)

O = (o1, o2, ..., oT ) (4.13)

A represents a transition array, storing the probability of transition from one

state to another.The state transition probabilities are independent of time

A = [aij ], aij = P (qt = sj |qt−1 = si) (4.14)

aij ≥ 0 (4.15)

N∑

j=1

aij = 1 (4.16)

B represents observation array, storing the probability of observation k being

produced from the state i, which is independent of time t

B = [bi(k)], bi(k) = P (ot = vk|qt = si) (4.17)

The initial probability array is represented by π

π = [πi], πi = P (q1 = si) (4.18)

N∑

i=1

πi = 1 (4.19)

There are two assumptions being made by the model. The first one, called

the Markov assumption, states that the current state is dependent only on the

previous state, this represents the memory property of the model

P (qt|qt−1, qt−2, ..., q1) = P (qt|qt−1) (4.20)
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The other one, independence assumption states that the output observation

at time t depends only on the current state, and is independent of previous

observations and states

P (ot|ot−1, ot−2, ..., o1, qt, qt−1, qt−2, ..., q1) = P (ot|qt) (4.21)

4.2.3 Three basic problems of HMM

For the HMMs to be useful in the real world, three basic problems needed to be

solved, these are:

1. Evaluation problem: Given an observation sequence O = o1, o2, ..., oT and

a model λ = (A,B, π), how to effectively compute P (O|λ), the probability

to observe the sequence for the given HMM.

2. Decoding problem: Given the observation sequence O = o1, o2, ..., oT and

the model λ = (A,B, π), how to choose a corresponding state sequence

Q = q1, q2, ..., qT , which is optimal in some meaningful sense.

3. Learning problem: How to adjust the model parameters λ = (A,B, π), to

maximize P (O|λ).

4.2.3.1 The evaluation problem

Given an HMM, and a sequence of observations, we would like to compute P(O|λ),

the probability of occurrence of observation sequence given the model. This

problem could be viewed as that of evaluating how well a model predicts a given

observation sequence, and thus allow us to choose the most appropriate model

from a set.

The probability of observing the observation sequence O for a specific state

sequence Q is

P (O|Q, λ) =

T∏

t=1

P (ot|qt, λ) = bq1(o1) × bq2(o2) × ...× bqT
(oT ) (4.22)
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And the state sequence probability is

P (Q|λ) = πq1 × aq1q2 × aq2q3 × ...× aqT−1qT
(4.23)

So the probability of observation given the model is

P (O|λ) =
∑

Q

P (O|Q, λ)P (Q|λ) =
∑

q1...qT

πq1bq1(o1)aq1q2bq2(o2)...aqT−1qT
bqT

(oT )

(4.24)

This expression allows us to evaluate the probability of occurrence of O given λ,

but evaluating it this way is computationally expensive, of the order of exponen-

tial in T (2TNT ).

A better approach is to realize that many redundant calculations would be

made while directly evaluating above equation, and therefore caching calculations

can lead to reduced complexity. We implement the cache as a trellis of states at

each time step, calculating the cached values (called α) for each state as a sum

over all states at the previous time step. α is the probability of the partial

observation sequence o1, o2, ..., ot and state si at time t. We define the forward

probability variable as

αt(i) = P (o1o2...ot, qt = si|λ) (4.25)

The algorithm for this process is called the forward algorithm and is as follows

1. Initialization

α1(i) = πibi(o1), 1 ≤ i ≤ N (4.26)

2. Induction

αt+1(j) = [
N∑

i=1

αt(i)aij ]bj(ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (4.27)

3. Termination

P (O|λ) =

N∑

i=1

αT (i) (4.28)
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Figure 4.6: Induction step for forward algorithm

The induction step is the key to the forward algorithm and is depicted in

figure 4.6. For each state sj , αj(t) stores the probability of arriving at that state

having observed the observation sequence until time t.

The forward algorithm reduces the complexity of calculations involved to N2T

from 2TNT , which is the complexity for direct calculation.

In a similar manner we can define a backward variable βt(i) as the probability

of partial observation sequence from t+1 to the end, given state si at time t and

the model λ.

βt(i) = P (ot+1ot+2...oT |qt = si, λ) (4.29)

We can solve for βt(i) as follows

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (4.30)

35

ind_for.eps
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2. Induction

βt(i) =

N∑

j=1

aijbj(ot+1)βt+1(j), t = T − 1, T − 2, ..., 1, 1 ≤ i ≤ N (4.31)

Computation of βt(i), 1 ≤ t ≤ T , 1 ≤ i ≤ N , requires calculations of the

order of N2T .

4.2.3.2 The decoding problem

The aim of decoding is to discover the hidden state sequence that is most likely to

have produced a given observation sequence. One solution to this problem is to

use the Viterbi algorithm to find the single best state sequence for an observation

sequence. The Viterbi algorithm is another trellis algorithm which is very similar

to the forward algorithm, except that the transition probabilities are maximized

at each step, instead of being summed.

For the solution of the decoding problem we define a variable γt(i), as the

probability of being in state i at time t, given the observation sequence O and

model λ.

γt(i) = P (qt = si|O, λ) (4.32)

γ can be expressed in terms of forward backward variables as

γt(i) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

(4.33)

Using γt(i), individually most likely state qt can be found out using

qt = max
1≤i≤N

[γt(i)] (4.34)

For Viterbi decoding we define a variable δt(i) as the probability of the most

probable state path for the partial observation sequence

δt(i) = max
q1,q2,...,qt−1

P (q1, q2, ..., qt−1, qt = si, o1, o2, ..., ot|λ) (4.35)
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The Viterbi algorithm is as follows

1. Initialization

δ1(i) = πibi(o1), 1 ≤ i ≤ N , ψ1(i) = 0 (4.36)

2. Recursion

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(ot), 2 ≤ t ≤ T , 1 ≤ j ≤ N (4.37)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T , 1 ≤ j ≤ N (4.38)

Figure 4.7: Recursion step of the Viterbi algorithm

3. Termination

P ∗ = max
1≤i≤N

[δt(i)] (4.39)
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q∗T = arg max
1≤i≤N

[δt(i)] (4.40)

4. Optimal state sequence backtracking

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, ..., 1 (4.41)

4.2.3.3 The learning problem

Given a set of examples from a process, we would like to be able to estimate the

model parameters λ = (A,B, π) that best describe that process. There are two

standard approaches to this task, dependent on the form of the examples, which

are referred as supervised and unsupervised training. If the training examples

contain both the inputs and outputs of a process, we can perform supervised

training by equating inputs to observations, and outputs to states, but if only the

inputs are provided in the training data then we must used unsupervised training

to guess a model that may have produced those observations.

For any finite observation sequence as training data, there is no optimal way

to estimate the model parameters, but we can choose λ = (A,B, π) such that

P (O|λ) is locally maximized.

Baum-Welch method is one such iterative method to estimate model param-

eters. For this we define a variable ξt(i, j), which gives the probability of being

in state si at time t and sj at time t + 1, given the model and the observation

sequence.

ξt(i, j) = P (qt = si, qt+1 = sj|O, λ) (4.42)

=
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
(4.43)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑

i=1

N∑

j=1

αt(i)aijbj(ot+1)βt+1(j)

(4.44)
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γt(i) can be expressed in terms of ξt(i, j) as

γt(i) =

N∑

j=1

ξt(i, j) (4.45)

Adding γt(i) over time variable t gives the expected number of times the state si

is visited. Similarly adding ξt(i, j) over t gives the expected number of transitions

from state si to sj.

Using above concepts, set of reasonable re estimation formula for π, A and B

are

π̄i = Expected frequency in state si at time (t = 1) = γ1(i) (4.46)

āij =
Expected number of transitions from state si to state sj

Expected number of transitions from state si
(4.47)

=

T−1∑

t=1

ξt(i, j)

T−1∑

t=1

γt(i)

(4.48)

b̄j(k) =
Expected number of times in state j, observing symbol vk

Expected number of times in state j
(4.49)

=

T∑

t=1,s.t.vt=ok

γt(j)

T∑

t=1

γt(j)

(4.50)

4.2.4 Video based speaker diarization

This section describes how video only information can be used to determine

speaker turn and group them together to realize the application of speaker di-

arization.
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4.2.4.1 Traditional video based speaker diarization methods

One approach for speaker diarization using video information is done by agglom-

erative clustering of video features using GMMs [10]. To provide video features for

speaker diarization, frame-based visual activity features, that have been shown to

correlate well with speaking activity patterns are used. For each frame, the aver-

age motion vector magnitude over estimated skin blocks is calculated and used as

a measure of individual visual activity for a camera view. Note that the averaging

over estimated skin blocks is done to reduce the effect of background clutter and

mitigate pose and scale variations. To detect skin blocks, a block-level skin-color

detector, working mostly in the compressed domain is used. A GMM is used to

model the distribution of (U,V) chrominance coefficients of skin-tone in the YUV

color space where each Gaussian component is assumed to have a diagonal covari-

ance matrix. In the Intra-frames, the likelihood of observed chrominance DCT

coefficients are computed according to the GMM and threshold it to determine

skin-color blocks. Skin blocks in the Inter-frames are inferred by using motion

vector information to propagate skin-color blocks through the duration of the

Group-Of-Picture (GOP). These values from all camera views are concatenated

and used as the video feature vector for that frame.

Another method to achieve speaker diarization using video information is

through detecting speaker locations [12]. The probability of speaker location is

estimated with a face location detection and tracking algorithm called Sparse

Template Condensation Tracker (STC Tracker), which is built into the record-

ing system. When the tracker is initialized it can automatically build 3-D face

templates, and it is robust as regards large head rotations of up to 60 degrees in

the horizontal direction. In addition, it can track multiple faces simultaneously

in real time by particle filtering with a GPU.

4.2.4.2 Face tracking

Face tracking extends face detection to video sequences. Any individual who

appears in a video for any length of time generates a face track that is, a se-

quence of face instances across time. The goal of face tracking is to aggregate

single-frame detection results into a collection of face tracks. In face tracking we
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exploit spatio-temporal continuity to associate face instances across frames, and

iteratively update motion models for all face tracks, respecting shot boundaries

in the process. It can serve as a front end to further analysis modules, such as

face recognition, face expression analysis, gaze tracking and lip-reading, to name

a few. Face tracking is also a core component to enable the computer to “see”

the user in a Human-Computer Interface system.

Figure 4.8: Block diagram for face tracking application

4.2.4.3 Face tracking using CAMSHIFT algorithm

Camshift stands for “Continuously Adaptive Mean Shift”. This is the basis for

the face-tracking algorithm in OpenCV. It combines the basic Mean Shift algo-

rithm with an adaptive region-sizing step [6]. The kernel is a simple step function
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applied to a skin-probability map. The skin probability of each image pixel is

based on color and is calculated using a method called histogram back projec-

tion. Color is represented as hue from the HSV color model. CAMSHIFT works

by tracking the hue of an object, in this case, flesh color. The movie frames

are all converted to HSV space before individual analysis. It’s a robust, non-

parametric, iterative technique for finding the mode of probability distributions.

It is also computationally less expensive so can be used for tracking in real time

applications.

The CAMSHIFT algorithm is based on the MEAN SHIFT algorithm. The

MEAN SHIFT algorithm works well on static probability distributions but not

on dynamic ones as in a movie. It is able to handle dynamic distributions by

readjusting the search window size for the next frame based on the zeroth moment

of the current frames distribution. This allows the algorithm to anticipate object

movement to quickly track the object in the next scene. Even during quick

movements of an object, CAMSHIFT is able to track it correctly.

The algorithm to implement CAMSHIFT is as follows:

1. Initial location of the 2D search window is computed.

2. The color probability distribution is calculated for a region slightly bigger

than the mean shift search window.

3. Mean shift is performed on the area until suitable convergence. The zeroth

moment and centroid coordinates are computed and stored.

4. The search window for the next frame is centered around the centroid and

the size is scaled by a function of the zeroth movement.

5. Go to step 2.

It is to be noted that the initial search window is specified manually.

4.2.4.4 Feature extraction from video

Video features used for the purpose of speaker diarization are frame based video

features. The features used is the histogram of the hue plane of the face pixels.
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The face of the speaker is extracted from the video using CAMSHIFT algorithm.

Then we determine the hue plane of the face region of each frame. The histogram

of this hue plane in 32 bins is being used as video feature vector. To determine

whether a segment belong to speaking or non-speaking, we train Hidden Markov

Model(HMM) of speaking/non-speaking features.

4.2.4.5 Video based unimodal speaker diarization using HMMs

Unimodal speaker diarization based on video features uses frame based video

features for speaker diarization. The features used is the histogram of the hue

plane of the face pixels. Hue plane features of the whole face are used and not

just of the lips. This is primarily because the face contains a considerable amount

of information from the perspective of changes in the hue plane. It was also noted

from initial experiments that the changes in the hue plane of the face pixels when

a person is speaking compared to when silent are significant. This histogram is

then used as feature vector for training models.

Figure 4.9: Video
frame of silent
speaker

Figure 4.10: Face
extraction

Figure 4.11: Hue
plane of the face

Figure 4.12:
Video frame of a
talking speaker

Figure 4.13: Face
extraction

Figure 4.14: Hue
plane of the face
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4.3 Speaker diarization using soft fusion of audio visual information

Figures 4.9, 4.10, 4.11, shows a frame of the video of a silent speaker from the

AMI database, whose skin colored pixels are tracked and then the hue plane of the

frame extracted. In Figures 4.12, 4.13, 4.14, a similar set of results are illustrated

for the same speaker and from the same video clip, when she is speaking.

Using the features extracted from the histogram of the hue plane, speaker

diarization is now performed over a video segment of a certain duration by cal-

culating the likelihood of the segment belonging to a model. The segment is

classified as belonging to that speaker, for which the model likelihood is maxi-

mum. HMMs for each speaker are trained a priori using the video features. A

speaker change is detected if the consecutive segments are classified as belong-

ing to different models. The probability of speaker change is computed as the

probability of two consecutive video segments belonging to two different models.

4.3 Speaker diarization using soft fusion of au-

dio visual information

The soft fusion of audio visual information using DS theory is done as described

in Section 3.3.

Here this is a two hypothesis problem being described as:

H1: Speaker change detected

H2: No speaker change detected

These hypothesis are to be tested using audio and video based decisions, Xaudio

and Xvideo respectively. Using Table 3.2, we can find out belief functions for the

two hypothesis as

Bel(H1) =
xyp1p2 + xp1(1 − y) + (1 − x)yp2

(1 − k)
(4.51)

Bel(H2) =
xy(1 − p1)(1 − p2) + x(1 − p1)(1 − y) + (1 − x)y(1 − p2)

(1 − k)
(4.52)
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The Belief function hence computed in Equation 4.51 and 4.52, gives a soft

decision measure for speaker diarization.
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Audio visual speech recognition

using soft fusion methods

Audio visual speech recognition (AVSR) is a technique that uses image processing

capabilities in lip reading to aid speech recognition systems in recognizing inde-

terministic phones or giving preponderance among near probability decisions.

Ability to organize and intelligently combine sensory data derived from multiple

sensors (modulated by perceptual relevance and sensory confidence) is crucial for

building a robust model of objects and events in our environment, in spite of

dramatically varying perceptual conditions. Audio visual speech recognition ex-

ploits human perceptual principle of sensory integration (Joint use of audio and

visual information) to improve the recognition of human activity (e.g. speech

recognition, speech activity, speaker change, etc.), intent (e.g. speech intent)

and identity (e.g: speaker recognition), particularly in the presence of acoustic

degradation due to noise and channel, and the analysis and mining of multimedia

content.

The applications for this work include accurate transcription of human activity

for improved human-computer interfaces, multimedia content mining and meeting

transcription. Many applications of AVSR lies in the field of health care, defense,

telephone based applications, and for people with disabilities.
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5.1 Audio based speech recognition

Figure 5.1: General procedure of an audio-visual speech recognition system

5.1 Audio based speech recognition

Speech recognition (also known as automatic speech recognition(ASR)) converts

spoken words to text. Speech recognition applications include voice dialing, call

routing, remote appliance control and content-based spoken audio search, simple

data entry (e.g., entering a credit card number), preparation of structured docu-

ments, speech-to-text processing (e.g., word processors or emails), and in aircraft

cockpits (usually termed Direct Voice Input).

5.1.1 Types of automatic speech recognition systems

Speech recognition systems can be characterized by many parameters, some of

which are shown in Table 5.1

Table 5.1: Typical parameters used to characterize the capability of speech recog-
nition systems

Parameters Range
Speaking modes Isolated words to continuous speech
Speaking style Read speech to spontaneous speech

Enrollment Speaker dependent to speaker independent
Vocabulary Small(<20 words) to large(>20000 words)

Language model Finite state to context sensitive
Perplexity Small(<10) to large(>100)

SNR High(>30db) to low(<10db)
Transducer Noise canceling microphone to telephone
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Speech recognition is a difficult problem, because of the many sources of vari-

ability associated with the signal, such as the acoustic realizations of phonemes,

the smallest sound units of which words are composed, are highly dependent on

the context in which they appear.

5.1.2 Performance of speech recognition systems

The performance of speech recognition systems is usually specified in terms of

accuracy and speed. Accuracy may be measured in terms of performance accuracy

which is usually rated with word error rate (WER), whereas speed is measured

with the real time factor.

5.1.2.1 HMM based speech recognition

Modern general-purpose speech recognition systems are generally based on Hid-

den Markov Models. These are statistical models which outputs a sequence of

symbols or quantities. One possible reason why HMMs are used in speech recog-

nition is that a speech signal could be viewed as a piecewise stationary signal

or a short-time stationary signal. Speech could be approximated as a stationary

process and could thus be thought of as a Markov process.

Another reason why HMMs are popular is because they can be trained auto-

matically and are simple to use and computationally feasible. In speech recogni-

tion, the hidden Markov model would output a sequence of n-dimensional real-

valued vectors (with n being a small integer, such as 10), outputting one of these

every 10 milliseconds. The vectors would consist of cepstral coefficients, which

are obtained by taking a Fourier transform of a short time window of speech

and de-correlating the spectrum using a cosine transform, then taking the first

few (most significant) coefficients. The hidden Markov model will tend to have

in each state a statistical distribution that is a mixture of diagonal covariance

Gaussians which will give a likelihood for each observed vector. Each word, or

(for more general speech recognition systems), each phoneme, will have a different

output distribution; a hidden Markov model for a sequence of words or phonemes

is made by concatenating the individual trained hidden Markov models for the

separate words and phonemes.
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Decoding of speech uses the Viterbi algorithm to find the best path, and here

there is a choice between dynamically creating a combined hidden Markov model

which includes both the acoustic and language model information, or combining

it statically beforehand (the finite state transducer, or FST, approach).

5.1.2.2 Dynamic time warping (DTW) based speech recognition

Dynamic time warping is an approach that was historically used for speech recog-

nition but has now largely been displaced by the more successful HMM-based ap-

proach. Dynamic time warping is an algorithm for measuring similarity between

two sequences which may vary in time or speed. For instance, similarities in

walking patterns would be detected, even if in one video the person was walking

slowly and if in another they were walking more quickly, or even if there were

accelerations and decelerations during the course of one observation. DTW has

been applied to video, audio, and graphics. Indeed, any data which can be turned

into a linear representation can be analyzed with DTW.

A well known application has been automatic speech recognition, to cope with

different speaking speeds. In general, it is a method that allows a computer to

find an optimal match between two given sequences (e.g. time series) with certain

restrictions, i.e. the sequences are “warped” non-linearly to match each other.

This sequence alignment method is often used in the context of hidden Markov

models.

5.1.3 Feature vector for audio modality

Speech recognition experiment, being performed on 33 speakers of GRID cor-

pus, with each speaker having an utterance of 1000 sentences. This is being

done for clean speech as well as speech corrupted with Additive White Gaussian

Noise(AWGN) of SNR 10dB, 20dB and 30dB.

13 dimensional MFCC features of audio signal is used as audio feature vector.

Filter bank parameters used for the calculation of MFCC’s are as follows

• Lowest frequency = 133.3333 Hz

• Linear filters = 13
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5.1 Audio based speech recognition

• Linear spacing = 66.66666666 Hz

• Log filters = 27

• Log spacing = 1.0711703 Hz

• FFT size = 512

• Cepstral coefficients = 13

• Window size = 256

HMM models for these MFCC vectors of each word utterance are trained for

audio only speech recognition.

Figure 5.2, 5.3, 5.4 and 5.5 shows audio signal and corresponding MFCC

feature vector contour for the utterance of the sentence “bin blue at f one soon”,

for clean speech and speech corrupted with AWGN having SNR of 30dB, 20dB

and 10dB respectively.

Figure 5.2: Clean speech signal & its feature vector
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5.1 Audio based speech recognition

Figure 5.3: Speech signal corrupted with AWGN having SNR of 30 dB & its
feature vector

Figure 5.4: Speech signal corrupted with AWGN having SNR of 20 dB & its
feature vector
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5.2 Video based speech recognition

Figure 5.5: Speech signal corrupted with AWGN having SNR of 10 dB & its
feature vector

5.2 Video based speech recognition

5.2.1 Visual speech

Visible Speech is a writing system invented in 1867 by Alexander Melville Bell,

father of Alexander Graham Bell, the inventor of the telephone. Melville Bell

was a teacher of the deaf and intended his writing system to help deaf students

learn spoken language. Visible Speech was also the first notation system for the

sounds of speech independent of a particular language or dialect and was widely

used to teach students how to speak with a “standard” accent. Visible Speech

symbols are intended to provide visual representation of the positions of speech

organs needed to articulate individual sounds. Visible Speech is also known as

the Physiological Alphabet.

Synchronous presentation of stimuli to the auditory and visual systems can

modify the formation of a percept in either modality. For example, perception of

auditory speech is improved when the speaker’s facial articulatory movements are

visible. Neural convergence onto multi sensory sites exhibiting supra-additivity

has been proposed as the principal mechanism for integration.
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5.2 Video based speech recognition

5.2.2 Visual information as a supplement to audio infor-

mation

The potential for improved speech recognition rates using visual features is well

established in the literature on the basis of psychophysical experiments. Canoni-

cal mouth shapes that accompany speech utterances have been categorized, and

are known as visual phonemes or “visemes”. Visemes provide information that

complements the phonetic stream from the point of view of confusability.

Figure 5.6: Audio-visual speech recognition system schematic

Candidate visual features are grayscale parameters of the mouth region; geo-

metric model-based parameters such as area, height, width of mouth region; lip

contours arrived at by curve fitting, spline parameters of inner/outer contour;

and motion parameters obtained by 3D tracking. Gray scale parameters suffer

from being sensitive to lighting conditions. Lip contour information, although

invariant to lighting conditions, may not provide enough information of the inner

articulators such as teeth and tongue. In general they can be grouped into three

classes of features, High level lip contour based features, low level video pixel

based one and a combination of these two.
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5.2 Video based speech recognition

5.2.3 Feature vector for video modality

We have used histogram of the lip region as video feature. To find out the video

feature, lip region is assumed in the lower half of the face part. We have used

70×110 pixel sized region, in the lower part of the face as lip region. To find out

video feature vector, fist we subtract RGB values of consecutive frames, so as to

get motion vector video from the original video. Lip region is then extracted from

this video and is converted to gray scale image by adding up the RGB values. A

non-linear scale histogram of the pixel values of each frame, in 16 bins is found

out and is used as feature vector. The 16 bin non linear scale used to find out

histogram is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9-10, 11-12, 13-15, 16-19, 20-29, 30-49 &

≥ 50.

HMM models for these video features of each word utterance are trained for

video only speech recognition.

Figure 5.7 shows lip region of a speaker when he is speaking the sentence “bin

blue at f one soon.”

Figure 5.7: Lip region features
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5.3 Audio visual information fusion

5.3 Audio visual information fusion

The primary challenge in AVSR is to obtain the performance which is equal to or

better than the performance of any modality for various noise conditions. When

the noise level is low, the acoustic modality performs better than the visual one

and, thus, the audio-visual recognition performance should be at least as good

as that of the acoustic speech recognition. When the noise level is high and

the visual recognition performance is better than the acoustic one, the integrated

recognition performance should be at least same as or better than the performance

of the visual-only recognition. Besides, we expect the synergy effect of the two

modalities by using AVSR systems. Thus, the goal of the second challenge in the

use of audio-visual information for speech recognition is to improve the recognition

performance with as high synergy of the modalities as possible.

Combining the two modalities should take full advantage of the individual

modalities so that the integrated system shows a high synergy effect for a wide

range of noise conditions. On the contrary, when the fusion is not performed

appropriately, we cannot expect complementarity and synergy of the two infor-

mation sources and, moreover, the integrated recognition performance may be

even inferior to that of any of the unimodal systems, which is called “attenuating

fusion” or “catastrophic fusion” [14].

5.3.1 Audio visual information fusion using DS theory

Speech recognition is a many hypothesis problem, depending on the number of

words in the dictionary. To use DS theory to combine the decisions made from

audio and video modalities, we first find out the reliability of audio and video

data by carrying out recognition experiments on the training data itself and find

our the percentage recognition. this gives us the reliability of audio and video

data.

The scaled audio and video probabilities are found out using the formula

probability = 10
log probability

1000×scale (5.1)
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5.3 Audio visual information fusion

In Equation 5.1, the variable “scale” represents the weight being given to

video modality, while making the combined decision. Recognition probability

(log probability) that we obtain from recognizer is quite less, for audio it is of the

order of -300 to -200 whereas for video is of the order of -3000 to -2000. Because

of exponential function, for large values of scale, difference in the probabilities of

different words is lager for video than audio. so large value of variable “scale”

represents more weight being given to video than audio.

Audio visual speech recognition is an N hypothesis problem, where each ut-

terance has N possible options to be classified into.

H1: word 1

H2: word 2

...

HN : word N

Recognition probabilities from individual modalities are given by Equation 5.2

P (Xaudio = Hi) = Ai;P (XV ideo = Hi) = Vi; 1 ≤ i ≤ N (5.2)

We want to find out most likely hypothesis by using XAudio and XV ideo, where

Xaudio : The audio feature based decision.

Xvideo : The video feature based decision.

The reliability of audio and video based decision is as given in Table 5.2

Table 5.2: Reliability of the unimodal features

Classification Feature Reliability
Audio : Xaudio x
Video : Xvideo y

Then, as being described in Section 3.3, The confusion-matrix for this N

hypothesis problem is shown in Table 5.3.

56



5.3 Audio visual information fusion

Table 5.3: The confusion-matrix of probability mass functions for multi modal
features

mv(H1)= yV1 mv(H2) = yV2 ... mv(HN )= yVN mv(Ω) = 1 − y
ma(H1)=xA1 ma,v(H1)=xyA1V1 k = xyA1V2 ... k = xyA1VN ma,v(H1)=x(1 − y)A1
ma(H2)=xA2 k = xyA2V1 ma,v(H2)= xyA2V2 ... k = xyA2VN ma,v(H2)=x(1 − y)A2

... ... ... ... ... ...
ma(HN )=xAN k = xyAN V1 k = xyANV2 ... ma,v(HN )= xyANVN ma,v(HN )=x(1 − y)AN
ma(Ω)= 1 − x ma,v(H1)= (1 − x)yV1 ma,v(H2)=(1 − x)yV2 ... ma,v(HN )=(1 − x)yVN ma,v(Ω)=(1 − x)(1 − y)

From Table 5.3, the total inconsistency k is given by

k =
N∑

i=1
i�=j

N∑

j=1

xyAiVj (5.3)

Hence the combined belief in hypothesis Hk, 1 ≤ k ≤ N , obtained from the

multiple modalities (speech and video) can now be formulated as

Bel(Hk) =
xyAkVk + x(1 − y)Ak + (1 − x)yVk

(1 − k)
(5.4)

The Belief function hence computed in Equation 5.4, gives a soft decision

measure for choosing a better hypothesis from the possible options.
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6

Databases

6.1 Multi modal data acquisition test Bed

The experimental test bed at MiPS lab, IIT Kanpur is a typical meeting room

setup which can accommodate four participants around a table. It is equipped

with an eight channel linear microphone array and a four channel video array,

capable of recording each modality synchronously.

Figure 6.1: Layout of the test bed at MiPS lab, IIT Kanpur

Figure 6.1 represents layout of the test bed. Here C1, C2, C3 are three

cameras; P1, P2, P3, P4 are four participants of the meeting ; M1, M2, M3, M4

represents four mics and S is the screen.
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6.2 AMI database

A manual timing pulse is generated to achieve multi modal synchronization.

For the purpose of speaker diarization we use only one channel of audio data and

3 channel of video data with each camera focusing on the participants face. The

multi modal data used in our experiments is eighteen minutes long, consisting

of 3 speakers taking turns as in a dialogue, and the discussion was centered

around varied topics like soccer, research, and mathematics. Figure 6.2 shows

the snapshot of the test bed used for generating the multi modal data

Figure 6.2: Actual test bed used to acquire data

6.2 AMI database

The AMI (Augmented Multi-party Interaction) project [15] is concerned with

the development of technology to support human interaction in meetings, and

to provide better structure to the way meetings are run and documented. The

AMI Meeting Corpus contains 100 hours of meetings captured using many syn-

chronized recording devices, and is designed to support work in speech and video

processing, language engineering, corpus linguistics, and organizational psychol-

ogy. It has been transcribed orthographically, with annotated subsets for every-
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6.2 AMI database

thing from named entities, dialogue acts, and summaries to simple gaze and head

movement.

Figure 6.3: AMI’s instrumented meeting room

Two-thirds of the corpus consists of recordings in which groups of four people

played different roles in a fictional design team that was specifying a new kind

of remote control. Controlling the data in this way allows us for better measures

of how well the groups are doing, and to compare to new data where groups use

these technologies that proves they help. However, it also limits the things people

talk about. The remaining third of the corpus contains recordings of other types

of meetings.

The project has a number of instrumented meeting rooms that enable the

collection of multi modal meeting recordings. For each meeting, audio (cap-

tured from multiple microphones, including microphone arrays), video (coming

from multiple cameras), slides (captured from the data projector), and textual

information (coming from associated papers, captured handwritten notes and
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6.3 GRID corpus

the white board) are recorded and time-synchronized. All of these streams are

then available to be structured, browsed and queried within an easily accessible

archive.

A subset of the multi modal data from the Augmented Multi-Party Inter-

action(AMI) corpus is used here to perform the experiments. It contains the

annotated data of four participants. The duration of the meeting was around 30

minutes. The subjects in the meeting are carrying out various activities such as

presenting slides, white board explanations and discussions round the table.

6.3 GRID corpus

GRID [9] is a large multi talker audio visual sentence corpus to support joint

computational behavioral studies in speech perception. In brief, the corpus con-

sists of high-quality audio and video (facial) recordings of 1000 sentences spoken

by each of 34 talkers (18 male, 16 female). Sentences are of the form “put red

at g nine now”. The corpus, together with transcriptions, is freely available for

research use.

6.3.1 Sentence design

Each sentence consisted of a six word sequence of the form indicated in Table

6.1. Of the six components, three - color, letter, and digit were designated as

keywords. In the letter position, “w” was excluded since it is the only multisyllabic

English alphabetic letter. “Zero” was used rather than “oh” or “nought” to avoid

multiple pronunciation alternatives for orthographic 0. Each talker produced all

combinations of the three keywords, leading to a total of 1000 sentences per talker.

The remaining components command, preposition, and adverb were fillers. Four

alternatives were available in each filler position. Filler words were chosen to

create some variation in contexts for the neighboring key words. Different gross

phonetic classes (nasal, vowel, fricative, plosive, liquid) were used as the initial

or final sounds of filler words in each position.
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6.3 GRID corpus

Table 6.1: Sentence structure for the Grid corpus. Keywords are identified with
asterisks

Command Color* Preposition Letter* Digit* Adverb
bin blue at A-Z 1-9, 0 again
lay green by excluding W now

place red in please
set white with soon

6.3.2 Speaker population

The aim of speaker selection was to provide a sufficiently large number of speakers

to allow users of the corpus to select subsets based on criteria such as intelligibility,

homogeneity, and variety. Sixteen female and eighteen male talkers contributed

to the corpus. Participants were staff and students in the Departments of Com-

puter Science and Human Communication Science at the University of Sheffield.

Student participants were paid for their contribution. All spoke English as their

first language. All but three participants had spent most of their lives in England

and together encompassed a range of English accents. Two participants grew

up in Scotland and one was born in Jamaica. Ages ranged from 18 to 49 years.

mean: 27.4 years.

6.3.3 Collection

Speech material collection was done under computer control. Sentences were

presented on a computer screen located outside the booth, and talkers had 3

seconds to produce each sentence. Talkers were instructed to speak in a natural

style. To avoid overly careful and drawn-out utterances, they were asked to speak

sufficiently quickly to fit into the 3 seconds time window.
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7

Performance evaluation

7.1 Speaker diarization experimental results

7.1.1 Evaluation methodology

The performance evaluation is carried out on two sets of multi modal data. One

set is generated by the multi modal data acquisition test bed at MiPS Lab at

IIT-Kanpur and the other is the AMI multi modal data corpus.

To facilitate for the synchronization of multi modal data i.e, the video frame

rate of 25 fps, and the speech sampling rate of 44100 Hz, we consider 1 second

segment interval for evaluating speaker change detection and subsequent speaker

diarization. This avoids replicating video frames for a certain number of times

as is done conventionally to synchronize multi modal data. The results obtained

are compared with the annotated data of the AMI Corpus. The multi modal

data recorded from the test bed has video frame rate of 30 fps and is manually

annotated. Speaker diarization performance is usually evaluated in terms of Di-

arization Error Rate (DER), which is essentially a sum of three terms namely,

missed speech (speech in the reference but not in the hypothesis), false alarm

speech (speech in the hypothesis but not in the reference), and speaker match

error (reference and hypothesized speakers differ). Hence the DER is computed

as

DER =
FA+MS + SMR

SPK
% (7.1)
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7.1 Speaker diarization experimental results

where missed speaker time (MS) is the total time when less speakers are detected

than what is correct, false alarm speaker time (FA) is the total time when more

speakers are detected than what is correct, speaker match error time (SMR) is the

total time when some other speaker is speaking rather than the speaker detected

and scored speaker time (SPK) is the sum of every speakers utterance time as

indicated in the reference.

7.1.2 Separability analysis for multi modal features

The Bhattacharyya distance (BD), which is a special case of the Chernoff dis-

tance is a probabilistic error measure and relates more closely to the likelihood

maximization classifiers that we have used for performance evaluation.
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Figure 7.1: Separability analysis results as the BD versus the feature dimension
for unimodal and multi modal features

Figure 7.1 illustrate the separability analysis results as the BD versus the

feature dimension for both unimodal (speech only & video only) and multi modal

(speech+video) features in Figure 7.1. The complementarity of the multi modal

64

bdist1final.eps


7.1 Speaker diarization experimental results

features when compared to unimodal speech features can be noted from Figure

7.1.

7.1.3 Experimental results

The reliability of each feature is determined by its speaker change detection per-

formance on a small development set created from the unimodal speech or video

data set.
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Figure 7.2: Speaker DER using unimodal audio and multi modal information
fusion on the two data sets

The reliability values of the audio and video features computed from the

development data set are given in Table 7.1, for the two corpora used in our

experiments. The speaker diarization error rates (DER) for both the multi modal

corpora used is also shown in Figure 7.2. It can be noted that reasonable reduction

in DER is noted when the multi modal information fusion methodology based on

DS theory is used.
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7.2 Audio visual speech recognition experimental results

Table 7.1: Reliability of the unimodal information as computed from their feature
vectors on the two multi modal data sets

Unimodal Feature Reliability Reliability
on AMI corpus on Test Bed data

Audio : Xaudio 90.47 87.50
Video : Xvideo 87.50 78.04

7.2 Audio visual speech recognition experimen-

tal results

A typical GRID corpus sentence consists of 6 words. These are as described below

• Word 1: bin | lay | place | set;

• Word 2: blue | green | red | white;

• Word 3: at | by | in | with;

• Word 4: a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u

| v | x | y | z;

• Word 5: zero | one | two | three | four | five | six | seven | eight | nine;

• Word 6: again | now | please | soon;

Figure 7.3: Clean speech signal and
its spectrogram

Figure 7.4: Noisy video signal
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7.2 Audio visual speech recognition experimental results

Figure 7.5: Noisy speech signal and
its spectrogram

Figure 7.6: Clean video signal

We have used 80% of the total data as training data and remaining 20% as

test data. Recognition was performed on every word of the sentence seperately

as well as on the whole sentence as continuous speech. Experiments were carried

out for 4 sets of noise conditions. First one is the clean speech and after that

recognition experiment was done on speech corrupted with AWGN of SNR 30dB,

20dB & 10dB.

Word recognition results for all the noise conditions are given in Tables 7.2,

7.3, 7.4 & 7.5

Table 7.2: Word recognition result for clean speech

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
Video reliability 52.33% 43.54% 44.04% 11.31% 21.89% 39.93%
Audio reliability 98.12% 95.74% 77.08% 72.10% 95.94% 99.94%
Video only result 50.33% 39.05% 40.55% 10.92% 25.24% 43.50%
Audio only result 96.99% 96.49% 79.89% 72.83% 96.65% 99.89%

Concatenated features result 82.98% 74.44% 57.62% 48.13% 71.19% 83.48%
DS fusion result 99.00% 96.63% 80.12% 74.34% 97.52% 99.89%

Whole sentence(Continuous speech) recognition results for various noise values

are tabled in Table 7.6

Figure 7.7, 7.8, 7.9, 7.10, 7.11 & 7.12 shows graph of percent word recognition

for different words for various noise conditions for audio only features, video only

features, concatenated features and using DS fusion mechanism.
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7.2 Audio visual speech recognition experimental results

Table 7.3: Word recognition result for speech corrupted with AWGN of SNR 30dB

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
Video reliability 52.33% 43.54% 44.04% 11.31% 21.89% 39.93%
Audio reliability 81.43% 89.50% 63.45% 59.61% 85.60% 88.64%
Video only result 50.33% 39.05% 40.55% 10.92% 25.24% 43.50%
Audio only result 81.94% 91.47% 64.16% 64.91% 86.36% 90.84%

Concatenated features result 80.42% 72.30% 54.41% 35.93% 58.49% 56.88%
DS fusion result 83.95% 91.97% 64.96% 65.97% 87.28% 92.67%

Table 7.4: Word recognition result for speech corrupted with AWGN of SNR 20dB

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
Video reliability 52.33% 43.54% 44.04% 11.31% 21.89% 39.93%
Audio reliability 54.72% 78.34% 58.17% 35.91% 60.66% 68.92%
Video only result 50.33% 39.05% 40.55% 10.92% 25.24% 43.50%
Audio only result 53.35% 78.92% 57.00% 37.25% 67.90% 72.25%

Concatenated features result 56.67% 64.77% 48.97% 26.7% 45.38% 50.06%
DS fusion result 64.47% 79.80% 58.35% 42.67% 69.87% 75.91%

Table 7.5: Word recognition result for speech corrupted with AWGN of SNR 10dB

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
Video reliability 52.33% 43.54% 44.04% 11.31% 21.89% 39.93%
Audio reliability 48.78% 64.12% 48.72% 18.92% 43.17% 49.70%
Video only result 50.33% 39.05% 40.55% 10.92% 25.24% 43.50%
Audio only result 48.95% 57.06% 51.51% 17.60% 47.84% 55.67%

Concatenated features result 62.91% 59.61% 44.45% 17.98% 36.39% 48.01%
DS fusion result 64.63% 60.38% 52.87% 21.86% 50.56% 59.45%

Table 7.6: Continuous speech recognition results

Clean speech SNR=30dB SNR=20dB SNR=10dB
Video 27.14% 27.14% 27.14% 27.14%
Audio 87.24% 78.20% 66.24% 49.32%

Concatenated 56.52% 48.71% 42.63% 35.16%

Figure 7.13, 7.14, 7.15 & 7.16 shows graph of percent word recognition against

scale variable as described in Equation 5.1 for different values of noise conditions.
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Figure 7.7: Recognition results for word1=“bin|lay|place|set”
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Figure 7.8: Recognition results for word2=“blue|green|red|white”
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7.2 Audio visual speech recognition experimental results
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Figure 7.9: Recognition results for word3=“at|by|in|with”
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Figure 7.10: Recognition results for word4=“A-Z, except W”
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7.2 Audio visual speech recognition experimental results
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Figure 7.11: Recognition results for word5=“zero-nine”
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Figure 7.12: Recognition results for word6=“again|now|please|soon”
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Figure 7.13: Recognition results for word1=“bin|lay|place|set” as a function of
scale
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Figure 7.14: Recognition results for word4=“A-Z, except W” as a function of
scale
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7.2 Audio visual speech recognition experimental results
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Figure 7.15: Recognition results for word5=“zero-nine” as a function of scale
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Figure 7.16: Recognition results for word6=“again|now|please|soon” as a function
of scale
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8

Conclusion and future scope

A methodology to fuse information from multiple modalities using Dempster

Shafer theory has been proposed here for speaker diarization and audio visual

speech recognition. Performance of unimodal speech based systems reduces dras-

tically when speech is corrupted with noise and cross talk. Hence the use of

additional information from the video modality can help alleviate this problem.

As the experimental results shows there is a significant improvement in the system

performance due to the use of multiple modalities and subsequent fusion. The

Dempster Shafer theory provides a framework for soft fusion when compared to

the conventional probabilistic fusion framework used in speech applications.

8.1 Speaker diarization system performance

Performance of speaker diarization system increases considerably when video in-

formation is fused with audio information as compared to audio only based sys-

tem.

A parameter of the system performance, Diarization Error Rate (DER), is

considerably low for system based on DS fusion of audio and video information,

as compared to audio only system. This result is being shown in Figure 7.2 for

ami database as well as data collected in lab meeting room setup.

Table 7.1 shows that audio has been more reliable than video, which is quiet

evident as there are certain sounds which can be produced without involving

mouth movement (e.g. nasals). This fact also reflects from Figure 7.1.
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8.2 Audio visual speech recognition system performance

8.2 Audio visual speech recognition system per-

formance

Speech recognition problem is more challenging than speaker diarization prob-

lem because it is a multiple hypothesis problem. Moreover video information for

speech recognition case is even less reliable as many type of sounds can be gen-

erated from one type of lip shape and different speakers have different speaking

styles.

For clean speech, audio provides excellent recognition results but with increase

in noise content, audio performance falls drastically. In high noise conditions even

this less reliable video information can be quiet helpful in improving recognition

results as is being shown in Table 7.2, 7.3, 7.4 & 7.5 and graphically being shown

in Figure 7.7, 7.8, 7.9, 7.10, 7.11 & 7.12.

Here results based on audio visual information fusion based on DS theory have

outperformed audio only recognition results and recognition results of concate-

nated audio-visual features.

The weight being given to video information changes the recognition results,

as per it’s reliability. For the example of word1 = “bin | lay | place | set”, for

which video reliability is good(52.33%), when video information is given higher

weightage, it produce excellnet recognition results, especially for noisy conditions,

as being shown in Figure 7.13. For other words also increasing video weightage

improves recognition results, but as video content gets too high performence

degrades, because of less reliability of video than audio.

8.3 Future scope

The work presented in this thesis has the potential to be extended in various

applications and to incorporate newer methods to increase the efficiency. Audio

visual speech recognition system can be employed in a car environment for assisted

driving, which would take speech commands for it’s functioning.

Newer information fusion methods can also be used to increase the efficiency

and accuracy of the system.
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Appendix A

HMM modeling of audio and

video data

Audio and video features obtained for the whole sentence are separated for each

word of the sentence using transcription files. These features are then trained to

generate HMMs for each word. The tool used to generate these HMMs is Hidden

Markov Model Toolkit(HTK). Before using HTK to train the models, feature

vectors which are in ASCII format are first converted to HTK format.

A.1 Hidden Markov Model Toolkit(HTK)

HTK (Hidden Markov Model Toolkit) is software toolkit for handling HMMs.

It is mainly intended for speech recognition, but has been used in many other

pattern recognition applications that employ HMMs. HTK is used for building

and manipulating hidden Markov models, being the core of most state-of-the-art

speech recognition systems.

The main HTK functions that are used in this audio-visual speech recognition

application are described below

A.1.1 HParse

HTK recognizer requires a word network to be defined using a low level notation

called HTK Standard Lattice Format (SLF), in which each word instance and
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A.1 Hidden Markov Model Toolkit(HTK)

each word-to-word transition is listed explicitly. This word network can be created

automatically from the grammar above using the HParse tool.

Grammar file that we have used is:

$command = bin | lay | place | set;

$color = blue | green | red | white;

$preposition = at | by | in | with;

$letter = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v |
x | y | z;

$digit = zero | one | two | three | four | five | six | seven | eight | nine;

$adverb = again | now | please | soon;

($command $color $preposition $letter $digit $adverb)

Command to use HParse function is

HParse gram wdnet

This will create an equivalent word network in the file wdnet.

A.1.2 HCompV

The first step in HMM training is to define a prototype model. The parameters

of this model are not important, its purpose is to define the model topology. We

have used a 3-state left-right HMM with no skips such as the following:

o <VecSize> 13 <USER>

h “proto”

<BeginHMM>

<NumStates> 5

<State> 2

<Mean> 13

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 13

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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A.1 Hidden Markov Model Toolkit(HTK)

<State> 3

<Mean> 13

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 13

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<State> 4

<Mean> 13

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<Variance> 13

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

<TransP> 5

0.0 1.0 0.0 0.0 0.0

0.0 0.6 0.4 0.0 0.0

0.0 0.0 0.6 0.4 0.0

0.0 0.0 0.0 0.7 0.3

0.0 0.0 0.0 0.0 0.0

<EndHMM>

The proto file for video modeling has 16 instead of 13 features.

Config file used is as follows:

# Coding parameters

TARGETKIND = USER

TARGETRATE = 100000.0

SAVECOMPRESSED = T

SAVEWITHCRC = T

WINDOWSIZE = 250000.0

USEHAMMING = T

PREEMCOEF = 0.97

NUMCHANS = 26

CEPLIFTER = 22

NUMCEPS = 12

78



A.1 Hidden Markov Model Toolkit(HTK)

ENORMALISE = F

The HTK tool HCompV will scan a set of data files, compute the global mean

and variance and set all of the Gaussian in a given HMM to have the same mean

and variance. Hence, assuming that a list of all the training files is stored in

train.scp, the command

/usr/local/bin/HCompV -C config -f 0.01 -m -S train.scp -M hmm0 proto

will create a new version of proto in the directory hmm0 in which the zero means

and unit variances above are been replaced by the global means and variances of

all the feature vectors.

A.1.3 HERest

The flat start monophones stored in the directory hmm0 are re-estimated using

the embedded re-estimation tool HERest invoked as follows:

/usr/local/bin/HERest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S train.scp

-H hmm0/macros -H hmm0/hmmdefs -M hmm1 monophones

The effect of this is to load all the models in hmm0 which are listed in the model

list monophones. These are then re-estimated using the data listed in train.scp

and the new model set is stored in the directory hmm1. This step is repeated 15

times. After this we get HMM models for all the words in the vocabulary.

A.1.4 HVite

This is the recognizer function of HTK and is used to recognize test data. As-

suming that test.scp holds a list of the coded test files, then each test file will be

recognized and its transcription is saved in an MLF called recout.mlf by executing

the following:

/usr/local/bin/HVite -H hmm15/macros -H hmm15/hmmdefs -S test.scp -l ’*’ -i
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A.1 Hidden Markov Model Toolkit(HTK)

recout.mlf -w wdnet -p 0.0 -s 5.0 dict tiedlist

HVite also has a option of generating lattices and N-best output, which give

N best match options and there log probabilities.

A.1.5 HResults

Assuming that the MLF testref.mlf contains word level transcriptions for each

test file, then the actual performance can be determined by running HResults as

follows

/usr/local/bin/HResults -I testref.mlf -f tiedlist recout.mlf
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